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Abstract

This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form
surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, (b) generation of nodes,
and (c) generation of elements., One of commercial solid modelers is employed for three-dimensional solid structures. Node is
generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing func-
tion is well controlled by the fuzzy knowledge processing. The Voronoi diagram method is introduced as a basic tool for ele-
ment generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses.
Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex

geometry.
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I. Introduction

The finite element method (FEM) has been widely utilized
in simulating various engineering problems such as structural
deformation, thermal conduction, fluid dynamics, electro-
magnetics and so on. The main reason for this is its high ca-
pability of dealing with boundary-value problems in arbitrarily
shaped domains. On the other hand, a mesh used influences
computational accuracy as well as time so signifi- cantly that
the mesh generation process is as much important as the FEM
analysis itself. Especially, in such large scale nonlinear FEM
analyses that approach the limitation of computational capa-
bility of so-called supercomputers, it is highly demanded to
optimize the distribution of mesh size under the condition of
limited total degrees of freedom. Thus, the mesh generation
process becomes more and more time-consuming and heavier
tasks.

Loads for pre-processing and post-processing are increasing
rapidly in accordance with an increase of scale and complex-
ity of analysis models to be solved. Particularly, the mesh
generation process, which influences computational accuracy as
efficiency and whose fully automation is very difficult in
three-dimensional (3D) cases, has become the most critical is-
sue in a whole process of the FE analyses. In this respect,
various researches [1-5] have been performed on the develop-

ment of automatic mesh generation techniques. Among mesh -

generation methods, the tree model method [6] can generate
graded meshes and it uses a reasonably small amount of com-
puter time and storage. However, it is, by nature, not possible
to arbitrarily control the changing rate of mesh size with re-
spect to location, so that some smaller projection and notch
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etc. are sometimes omitted. Also, domain decomposition meth-
od [7] does not always succeed, and a designation of such
subdomains is very tedious for uses in 3D cases.

In recent years, much attention has been paid to fuzzy
knowledge processing techniques [8], which allow computers
to treat “ambiguous” matters and processes. In this paper, a
novel FE mesh generation system are explained based on fuz-
zy knowledge processing and computational geometry
techniques. Here, the node density distribution, which is a
kind of a node spacing function, was well controlled by
means of the fuzzy knowledge processing technique, so that
even beginners of the FE analyses are able to produce nearly
optimum meshes through very simple operations as if they
were experts.

The individual techniques in the present study are as fol-

lows :

(a) Adoption of practical geometric modelers such as
Designbase [9] which are capable of dealing with
Bezier-type free-form surfaces.

(b) Adoption of the grid method [10] for fast node gen-
eration, which is one of computational geometry
techniques.

(c) Adoption of the Voronoi diagram method [2] for fast
element generation.

In the following sections, first described are the general re-
quirements for automatic mesh generators, the fundamental
principle of the present algorithm. The practical performances
of the system are demonstrated through the mesh generation
of several 3D structures.
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2. General Requirement for Automatic Mesh
Generation System

The phase of pre-processing is very important in the sense
that the generation of a valid mesh in a domain with a com-
plex geometry is not a trivial operation and can be very ex-
pensive in terms of the time required. On the other hand, it is
crucial to create a mesh which is well adapted to the physical
properties of the problem under consideration, as the quality
of the computed solution is strongly related to the quality of
the mesh.

Various automatic and semi-automatic mesh generation
methods have been investigated so far. The requirements for
ideal fully automatic mesh generation systems may be sum-
marized as follows [11] :

(a) Arbitrarily shaped domain can be subdivided into
elements.

(b) Mesh size and its changing rate with respect to location
can be easily controlled.

(c) Distortion of element shape can be avoided as much as
possible.

(d) Total number of nodes can be controlled.

(e) Number of input data is smaller.

The requirement (a) is fundamental, while (b) and (c) are
strongly related to mesh quality. The requirement (d) corre-
sponds to the controllability of computatiopal time and
storage. If any system satisfies the items (a) through (d), opti-
mum meshes can be generated with the balance of computa-
tional accuracy as well as efficiency. The requirement (e) is
also indispensable for any systems dealing with 3D complex
geometries.

3. Outline of the System

3.1 Definition of Geometric Model

Geometric modelers are utilized to define geometries of
analysis domains. One of commercial geometric modelers,
Designbase [9] is employed for 3D solid structures. The ad-
vantage of Designbase is that a wide range of solid shapes
from polyhedra to free-form surfaces can be designed in a
unified manner. In these modelers, 3D geometric data are stor-
ed as a tree structure of domain - surfaces (free-form surfaces
such as Bezier or Gregory type surfaces) - edge (B-spline or
Bezier type curves) - vertices.

Designbase allows the user to start with a hierarchical com-
positional Constructive Solid Geometry (CSG)-view of a part
and then to refine it with local but consistent operations on
the boundary represen- tation of the object. By basing all op-
erations available to the user on well-defined, invertible Euler-
operations, it is possible to keep a compact represen- tation of
the complete design history of a part, and thus to “undo” and
“redo” any sequence of operations. This encourages the de-
signer to try out ideas without fear of destroying a model in
which several hours of design time have already been
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invested. It also makes it possible to store several alternative
versions of a design in a natural and efficient manner. As an
example, Fig. 1 shows a geometry model of 3D solid struc-
tures using Designbase. '

Fig. 1. Examples of geometry model

3.2 Designation of node density distributions

In this section, the connecting process of locally-optimum
mesh images is dealt with using the fuzzy knowledge process-
ing technique [12,13].

To begin with, let us consider a mesh generation process
performed by the experts on FEM stress analyses, taking an
example of an upper half portion of a cracked plate with a
circular hole as shown in Fig. 2(a). Fig. 2(b) and 2(c) show
the schematic views of the locally-optimumn mesh images
around a hole and a crack, respectively. It is anticipated that
the experts have attained such mesh images through theoretical
studies of numerical analyses. If both mesh images are con-
nected smoothly, one could generate a quasi globally-optimum
mesh in the whole analysis domain. However, it will be soon
noticed that none of the conventional mesh generation techni-
ques, which are strictly based on mathematical principles, en-
ables us to do so since the connecting process is ambiguous
and non-algorithmic.

In this paper, such a connection process of locally optimum
mesh images is performed using the fuzzy knowledge process-
ing technique.

3.3 Superposition of Locally Optimum Mesh Pattern

Performances of automatic mesh generation methods based
on node generation algorithms depend on how to control node
spacing functions or node density distributions and how to
generate nodes. The basic concept of the present mesh gen-
eration algorithm is originated from the imitation of mesh
generation processes by human experts on FE analyses. One
of the aims of this algorithm is to transfer such experts' tech-
niques to beginners.

In the present system, nodes are first generated, and then a
finite element mesh is built. In general, it is not so easy to
well control element size for a complex geometry. A node
density distribution over a whole geometry model is con-
structed as follows. The present system stores several local
nodal patterns such as the pattern suitable to well capture
stress concentration, the pattern to subdivide a finite domain
uniformly, and the pattern to subdivide a whole domain
uniformly. A user selects some of those local nodal patterns,
depending on their analysis purposes, and designates where to
locate them.
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For example, when either the crack of the hole exists solely
in an infinite domain, the local node patterns as shown in
Figs. 3(a) and 3(b) may be regarded locally-optimum around
the crack tip or the hole, respectively. When these stress con-
centration fields exist closely to each other in the same analy-
sis domain, a simple superposition of both local node patterns
gives the result as shown in Fig. 4(a). Namely, extra nodes
have to be removed from the superposed region of both
patterns.

In the present method, the field A close to the crack-tip
and the field B close to the hole are defined in terms of the
membership functions used in the fuzzy set theory as shown
in Fig. 4(c).

For the purpose of simplicity, each membership function is
given a function of one-dimension in the figure. In practice
the membership function can be expressed as p(x, y) in this
particular example, and in 3D cases it is a function of 3D co-
ordinates, i.e. # (X, y, z). In Fig. 4(c), the horizontal axis de-
notes the location, while the vertical axis does the value of
membership function, which indicates the magnpitude of
“loseness”of the location to each stress concentration field.
That is, a nodal location closer to the stress concentration
field takes a larger value of the membership function. As for
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Fig. 4. Superposition of node patterns based on fuzzy
knowledge processing

Fig. 4(b), choosing the mesh pattern with a larger value of the
membership function in each location, one can obtain an over-
lapped curve of both membership functions, and the domain
can be automatically divided into the following two sub-do-
mains A and B as shown in Fig. 4(c) : the sub-domain close
to the crack-tip and that of the hole. Finally, both node pat-
terns are smoothly connected as shown in Fig. 4(d). This pro-
cedure of node generation, i.e. the connection procedure of
both node patterns, is summarized as follows :

I palxp, vo) = uB(xp, yp) for a node p (xp, yo) be-
longing to the pattern A, then the node p is generated,
and otherwise p is not generated.

“If pa(Xq, Yo) = pB(Xq, va) for a node q (xq, yq) be-
longing to the pattern B, then the node q is generated,
and otherwise q is not generated.

It is apparent that the above algorithm can be easily ex-
tended to 3D problems and any number of node patterns. In
addition, since finer node patterns are generally required to
place near stress concentration sources, it is convenient to let
the membership function correspond to node density as well.
According to this definition, Fig. 5 also indicates the dis-
tribution of node density over the whole analysis domain in-
cluding the two stress concentration fields. When designers do
not want any special meshing, they can adopt uniformly sub-
divided mesh. It is possible to combine the present techniques
with an adaptive meshing technique.
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Node density

Fig. 5. Distribution of node density of whole domain

3.4 Node Generation

Node generation is one of time consuming processes in au-
tomatic mesh generation. The base node pattern and several
special ones are placed in the domain, and all the node pat-
terns are smoothly connected based on the principle described
in section 3.3.

The input data required are only the node density of the
base node pattern such as unit distance of nodes, the kinds of
special node patterns, and the location and node densities at
the representative points of the special node patterns.

The procedure of two dimensional node generation of the
base node pattern is illustrated in Fig. 6. First, either a cir-
cumscribed rectangle or box (in the 3D) to the domain is de-
termined, in which nodes are generated regularly. A distance
of neighboring nodes of the pattern, which is called "base grid
size” here, is inputted by a user. Second, each node is exam-
ined whether to be inside the domain by the IN-OUT check
criterion, and any nodes outside the domain are removed. Any
nodes located very closely to the domain boundary are re-
moved as well to avoid undesirable distortion of mesh shape
near the domain boundary. Among algorithms for uniform
node generation, the present method may not be the best one

Rectangle over an analysis
domain \ .

......................

Boundary

e Base grid nodes .
generated in the domain

@ Base grid nodes generated
on the domain boundary

o Deleted nodes
r  Unit distance of grid

Fig. 6. Generation of base node pattern

196

as for the uniformity of node locations near the domain boun-
dary, but it is very simple operation. On plane boundary of
3D structures, nodes are generated by the identical procedure
to the above 2D case. On line boundary, nodes are generated
regularly with the identical space to the base grid size.

Next, several node patterns are generated through an inter-
active operation between a user and the system. The input da-
ta required here are only the node density and the location of
each stress concentration point.

The node generation procedure of the special node pattern
inside the domain is essentially identical to that of the base
node pattern described previously. On the other hand, nodes
on the domain boundary are generated one by one by calculat-
ing the value of the membership function on the boundary.
For example, nodes are generated on straight line as follows:

Xipn = X+ ['f—%/'z‘) U 0))

where function f is the value of membership function, u the
unit base vector of the line, Xi. the vector of the new point,
and X; that of the old point, respectively.

3.5 Creation of Finite Elements

After all the nodes are generated in the analysis domain
and on its boundary, the system creates triangular (in the 2D)
or tetrahedral (in the 3D) elements. As an example, the algo-
rithm of triangulation used here is described in Fig. 7.

a-¢ :Candidates for the 3rd Node
1-11 : Confirmed Elements

Fig. 7. Schematic view of triangulation mesh

First, created is the table which involves the coordinate da-
ta of segmented lines and the numbers of both initial and ter-
minal nodes. In the beginning stages, only the segmented lines
on the domain boundary are registered in the table. Following
the order of registration, one segmented line is taken. Then,
the node such that an inner angle produced by the node and
the segmented line is the largest, is chosen among other no-
des, and a new triangle and two new segmented lines are
created. If the new lines have not been registered in the table
yet, they are added at the end of the table. Such operation is
repeated until all the segmented lines are processed. Finally
the whole domain is subdivided into a number of triangles. In
a 3D domain, tetrahedral elements can be generated by the
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similar algorithm.

3.6 Smoothing Process of Element

The algorithm of element generation mentioned above
works well in most cases. However, element shapes obtained
are sometimes distorted in a superposed region of several
node patterns or near domain boundary. The smoothing meth-
od called “Laplacian operation”[19] is here applied to remedy
such distorted elements. In this operation, the location of each
node is replaced with a mean value of locations of its neigh-
boring nodes. This operation is iterated several times.

4, Examples and Discussions

The performance of the system is demonstrated through the
mesh generation of several 3D structures./Fig. 8 to 10 show
the examples of the application of this mesh generator for 3D
geometry. As shown in figures, a uniform mesh and a nonuni-
form mesh were connected very smoothly. In case of a half of
piston head as shown in Fig. 8, it took about 60 minutes to
define this geometry model by using Designbase. The mesh
consists of 14,250 tetrahedral elements and 27,458 nodes.
Nodes and elements are generated in about 15 minutes and in
about 3 minutes, respectively. To complete this mesh, the fol-
lowing two node patterns are utilized ; (a) the base node pat-
tern in which nodes are generated with uniform spacing over
a whole analysis domain, (b) a special node pattern for stress
concentration of four corners. In case of complex nozzle cor-
ner as shown in Fig. 10, nodes and elements were generated
in about 30 minutes and in about 20 minutes, respectively.
The mesh consists of 38,863 tetrahedral elements and 8,426
nodes.

5. Conclusions

A novel automatic FEM mesh generation system for large
scale complex structures. Here several locally optimum node
patterns are chosen from a database and are superposed auto-
matically based on the fuzzy knowledge processing technique.
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Fig. 8 Mesh for a half of piston head

Fig. 9. Mesh for a symmetric 2 convolution of bellows
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Fig. 10. Mesh for a nozzle part
(No. of nodes = 8,426, No. of elements = 38,863)

Also, several computational geometry techniques were suc-
cessfully applied to node and element generation, whose proc-
essing speed is proportional to the total number of nodes. The
key features of the present algorithm are an easy control of
complex 3D node density distribution with a fewer input data
by means of the fuzzy knowledge processing technique, and
fast node and element generation owing to some computa-
tional geometry techniques. The effective of the present sys-
tem is demonstrated through several mesh generations for 3D
complex structures.
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