• 제목/요약/키워드: Memory window voltage

검색결과 71건 처리시간 0.011초

Metal/Ferroelectric/Insulator/Semiconductor 구조의 결정 구조 및 전기적 특성에 관한 연구 (Characteristics of the Crystal Structure and Electrical Properties of Metal/Ferroelectric/Insulator/Semiconductor)

  • 신동석;최훈상;최인훈;이호녕;김용태
    • 한국진공학회지
    • /
    • 제7권3호
    • /
    • pp.195-200
    • /
    • 1998
  • 본 연구에서는 강유전체 박막의 게이트 산화물로 사용한 $Pt/SrBi_2Ta_2O_9(SBT)/CeO_2/Si(MFS)$와 Pt/SBT/Si(MFS) 구조의 결정 구조 및 전기적 성질 의 차이를 연구하였다. XRD 및 SEM 측정 결과 SBT/$CeO_2$/Si박막은 약5nm정도의 $SiO_2$층 이 형성되었고 비교적 평탄한 계면의 미세구조를 가지는 반면, SBT/Si는 각각 약6nm와 7nm정도의 $SiO_2$층과 비정질 중간상층이 형성되었음을 알 수 있다. 즉 CeO2 박막을 완충층 으로 사용함으로써 SBT박막과 Si기판의 상호 반응을 적절히 억제할 수 있음을 확인하였다. Pt/SBT/$CeO_2/Pt/SiO_2$/와 Pt/SBT/Pt/$SiO_2$/Si구조에서 Polarization-Electric field(P-E) 특 성을 비교해 본 결과 CeO2박막의 첨가에 따라 잔류분극값은 감소하였고 항전계값은 증가하 였다. MFIS구조에서 memory window값은 항전계값과 직접적 관련이 있으므로 이러한 항 전계값의 증가는 MFIS구조에서의 memory window값이 증가할 수 있음을 나타낸다. Pt-SBT(140nm)/$CeO_2$(25nm)/Si구조에서 Capacitance-Voltage(C-V) 측정 결과로부터 동작 전압 4-6V에서 memory wondows가 1-2V정도로 나타났다. SBT박막의 두께가 증가할수록 memory window값은 증가하였는데 memory wondows가 1-2V정도로 나타났다. SBT박막의 두께가 증가할수록 memory window값은 증가하였는데 이는 SBT박막에 걸리는 전압강하가 증가하기 때문인 것으로 생각되어진다. Pt/SBT/$CeO_2$/Si의 누설전류는 10-8A/cm2정도였고 Pt/SBT/Si 구조에서는 약10-6A/cm2정도로 약간 높은 값을 나타내었다.

  • PDF

Nonvolatile memory devices with oxide-nitride-oxynitride stack structure for system on panel of mobile flat panel display

  • Jung, Sung-Wook;Choi, Byeong-Deog;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.911-913
    • /
    • 2008
  • In this work, nonvolatile memory (NVM) devices for system on panel of flat panel display (FPD) were fabricated using low temperature polycrystalline silicon (LTPS) thin film transistor (TFT) technology with an oxide-nitride-oxynitride (ONOn) stack structure on glass. The results demonstrate that the NVM devices fabricated using the ONOn stack structure on glass have suitable switching characteristics for data storage with a low operating voltage, a threshold voltage window of more than 1.8 V between the programming and erasing (P/E) states after 10 years and its initial threshold voltage window (${\Delta}V_{TH}$) after $10^5$ P/E cycles.

  • PDF

Electrical Properties of Metal-Ferroelectric-Insulator-Semiconductor Field-Effect Transistor Using an Au/$(Bi,La)_4Ti_3O_{12}/LaZrO_x$/Si Structure

  • Jeon, Ho-Seung;Lee, Gwang-Geun;Kim, Joo-Nam;Park, Byung-Eun;Choi, Yun-Soo
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.171-172
    • /
    • 2007
  • We fabricated the metal-ferroelectric-insulator-semiconductor filed-effect transistors (MFIS-FETs) using the $(Bi,La)_4Ti_3O_{12}\;and\;LaZrO_x$ thin films. The $LaZrO_x$ thin film had a equivalent oxide thickness (EOT) value of 8.7 nm. From the capacitance-voltage (C-V) measurements for an Au/$(Bi,La)_4Ti_3O_{12}/LaZrO_x$/Si MFIS capacitor, a hysteric shift with a clockwise direction was observed and the memory window width was about 1.4 V for the bias voltage sweeping of ${\pm}9V$. From drain current-gate voltage $(I_D-V_G)$ characteristics of the fabricated Fe-FETs, the obtained threshold voltage shift (memory window) was about 1 V due to ferroelectric nature of BLT film. The drain current-drain voltage $(I_D-V_D)$ characteristics of the fabricated Fe-FETs showed typical n-channel FETs current-voltage characteristics.

  • PDF

Memory Characteristics of High Density Self-assembled FePt Nano-dots Floating Gate with High-k $Al_2O_3$ Blocking Oxide

  • Lee, Gae-Hun;Lee, Jung-Min;Yang, Hyung-Jun;Kim, Kyoung-Rok;Song, Yun-Heub
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.388-388
    • /
    • 2012
  • In this letter, We have investigated cell characteristics of the alloy FePt-NDs charge trapping memory capacitors with high-k $Al_2O_3$ dielectrics as a blocking oxide. The capacitance versus voltage (C-V) curves obtained from a representative MOS capacitor embedded with FePt-NDs synthesized by the post deposition annealing (PDA) treatment process exhibit the window of flat-band voltage shift, which indicates the presence of charge storages in the FePt-NDs. It is shown that NDs memory with high-k $Al_2O_3$ as a blocking oxide has performance in large memory window and low leakage current when the diameter of ND is below 2 nm. Moreover, high-k $Al_2O_3$ as a blocking oxide increases the electric field across the tunnel oxide, while reducing the electric field across the blocking layer. From this result, this device can achieve lower P/E voltage and lower leakage current. As a result, a FePt-NDs device with high-k $Al_2O_3$ as a blocking oxide obtained a~7V reduction in the programming voltages with 7.8 V memory.

  • PDF

Increasing P/E Speed and Memory Window by Using Si-rich SiOx for Charge Storage Layer to Apply for Non-volatile Memory Devices

  • 김태용;;김지웅;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.254.2-254.2
    • /
    • 2014
  • The Transmission Fourier Transform Infrared spectroscopy (FTIR) of SiOx charge storage layer with the richest silicon content showed an assignment at peaks around 2000~2300 cm-1. It indicated that the existence of many silicon phases and defect sources in the matrix of the SiOx films. The total hysteresis width is the sum of the flat band voltage shift (${\Delta}VFB$) due to electron and hole charging. At the range voltage sweep of ${\pm}15V$, the ${\Delta}VFB$ values increase of 0.57 V, 1.71 V, and 13.56 V with 1/2, 2/1, and 6/1 samples, respectively. When we increase the gas ratio of SiH4/N2O, a lot of defects appeared in charge storage layer, more electrons and holes are charged and the memory window also increases. The best retention are obtained at sample with the ratio SiH4/N2O=6/1 with 82.31% (3.49V) after 103s and 70.75% after 10 years. The high charge storage in 6/1 device could arise from the large amount of silicon phases and defect sources in the storage material with SiOx material. Therefore, in the programming/erasing (P/E) process, the Si-rich SiOx charge-trapping layer with SiH4/N2O gas flow ratio=6/1 easily grasps electrons and holds them, and hence, increases the P/E speed and the memory window. This is very useful for a trapping layer, especially in the low-voltage operation of non-volatile memory devices.

  • PDF

Electrical Properties of Metal-Ferroelectric-Semiconductor Structures Based on Ferroelectric P(VDF-TrFE) Copolymer Film

  • Lee, Gwang-Geun;Park, Hyeong-Jin;Han, Hui-Seong;Park, Byung-Eun
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.85-86
    • /
    • 2007
  • A poly(vinylidene fluoride-trifluoroethyene) (P(VDF-TrFE)) copolymer thin film having ${\beta}$ phase was prepared by sol-gel method. The electrical properties of the film were studied to evaluate the possibility for appling to a ferroelectric random access memory. In order to characterize its electrical properties, we produced a MFS (metal-ferroelectric-semiconductor) structure by evaporation of Au electrodes. The C-V (capacitance-voltage) measurement revealed that the Au/P(VDF-TrFE)/Si structure with a 4 wt% film had a memory window width of about 0.5V for a bias voltage sweep of 1V.

  • PDF

$Pt/SrTiO_3/Pb_x(Zr_{0.52}, Ti_{0.48})O_3/SrTiO_3/Si$ 구조의 전기적 특성 분석 및 $SrTiO_3$박막의 완충층 역할에 관한 연구 (Electrical Properties in $Pt/SrTiO_3/Pb_x(Zr_{0.52}, Ti_{0.48})O_3/SrTiO_3/Si$ Structure and the Role of $SrTiO_3$ Film as a Buffer Layer)

  • 김형찬;신동석;최인훈
    • 한국전기전자재료학회논문지
    • /
    • 제11권6호
    • /
    • pp.436-441
    • /
    • 1998
  • $Pt/SrTiO_3/Pb_x(Zr_{0.52}, Ti_{0.48})O_3/SrTiO_3/Si$ structure was prepared by rf-magnetron sputtering method for use in nondestructive read out ferroelectric RAM(NDRO-FEAM). PBx(Zr_{0.52}Ti_{0.48})O_3}$(PZT) and $SrTiO_3$(STO) films were deposited respectively at the temperatures of $300^{\circ}C and 500^{\circ}C$on p-Si(100) substrate. The role of the STO film as a buffer layer between the PZT film and the Si substrate was studied using X-ray diffraction (XRD), Auger electron spectroscopy (ASE), and scanning electron microscope(SEM). Structural analysis on the interfaces was carried out using a cross sectional transmission electron microscope(TEM). For PZT/Si structure, mostly Pb deficient pyrochlore phase was formed due to the serious diffusion of Pb into the Si substrate. On the other hand, for STO/PZT/STO/Si structure, the PZT film had perovskite phase and larger grain size with a little Pb interdiffusion. the interfaces of the PZT and the STO film, of the STO film and the interface layer and $SiO_2$, and of the $SiO_2$ and the Si substate had a good flatness. Across sectional TEM image showed the existence of an amorphous layer and $SiO_2$ with 7nm thickness between the STO film and the Si substrate. The electrical properties of MIFIS structure was characterized by C-V and I-V measurements. By 1MHz C-V characteristics Pt/STO(25nm)/PZT(160nm)/STO(25nm)/Si structure, memory window was about 1.2 V for and applied voltage of 5 V. Memory window increased by increasing the applied voltage and maximum voltage of memory window was 2 V for V applied. Memory window decreased by decreasing PZT film thickness to 110nm. Typical leakage current was abour $10{-8}$ A/cm for an applied voltage of 5 V.

  • PDF

저전압 플래시메모리를 위한 SONOS 비휘발성 반도체기억소자에 관한 연구 (A Study on SONOS Non-volatile Semiconductor Memory Devices for a Low Voltage Flash Memory)

  • 김병철;탁한호
    • 한국정보통신학회논문지
    • /
    • 제7권2호
    • /
    • pp.269-275
    • /
    • 2003
  • 저전압 프로그래밍이 가능한 플래시메모리를 실현하기 위하여 0.35$\mu\textrm{m}$ CMOS 공정 기술을 이용하여 터널링산화막, 질화막 그리고 블로킹산화막의 두께가 각각 2.4nm, 4.0nm, 2.5nm인 SONOS 트랜지스터를 제작하였으며, SONOS 메모리 셀의 면적은 1.32$\mu$$m^2$이었다. 질화막의 두께를 스케일링한 결과, 10V의 동작 전압에서 소거상태로부터 프로그램상태로, 반대로 프로그램상태에서 소거상태로 스위칭 하는데 50ms의 시간이 필요하였으며, 최대 메모리윈도우는 1.76V이었다. 그리고 질화막의 두께를 스케일링함에도 불구하고 10년 후에도 0.5V의 메모리 윈도우를 유지하였으며, 105회 이상의 프로그램/소거 반복동작이 가능함을 확인하였다. 마지막으로 부유게이트 소자에서 심각하게 발생하고있는 과도소거현상이 SONOS 소자에서는 나타나지 않았다.

메모리 소자에의 응용을 위한 SrBi2Nb2O9 박막의 성장 및 전기적 특성 (Growth and Characteristics of SrBi2Nb2O9 Thin Films for Memory Devices)

  • 강동훈;최훈상;이종한;임근식;장유민;최인훈
    • 한국재료학회지
    • /
    • 제12권6호
    • /
    • pp.464-469
    • /
    • 2002
  • $SrBi_2Nb_2O_9(SBN)$ thin films were grown on Pt/Ti/Si and p-type Si(100) substrates by rf-magnetron co-sputtering method using two ceramic targets, $SrNb_2O_6\; and \;Bi_2O_3$. The structural and electrical characteristics have been investigated to confirm the possibility of the SBN thin films for the applications to destructive and nondestructive read out ferroelectric random access memory(FRAM). For the optimum growth condition X-ray diffraction patterns showed that SBN films had well crystallized Bi-layered perovskite structure after $700^{\circ}C$ heat-treatment in furnace. From this specimen we got remnant polarization $(2P_r)$ of about 6 uC/$\textrm{cm}^2$ and coercive voltage $(V_c)$ of about 1.5 V at an applied voltage of 5 V. The leakage current density was $7.6{\times}10^{-7}$/A/$\textrm{cm}^2$ at an applied voltage of 5V. And for the NDRO-FRAM application, properties of SBN films on Si substrate has been investigated. From transmission electron microscopy (TEM) analysis, we found the furnace treated sample had a native oxide about 2 times thicker than the RTA treated sample and this thick native oxide layer had a bad effect on C-V characteristics of SBN/Si thin film. After $650^{\circ}C$ RTA process, we got the improved memory window of 1.3 V at an applied voltage of 5 V.

0.25 μm 표준 CMOS 로직 공정을 이용한 Single Polysilicon EEPROM 셀 및 고전압소자 (Single Polysilicon EEPROM Cell and High-voltage Devices using a 0.25 μ Standard CMOS)

  • 신윤수;나기열;김영식;김영석
    • 한국전기전자재료학회논문지
    • /
    • 제19권11호
    • /
    • pp.994-999
    • /
    • 2006
  • For low-cost embedded EEPROM, in this paper, single polysilicon EEPROM and n-channel high-voltage LDMOST device are developed in a $0.25{\mu}m$ standard CMOS logic process. Using these devices developed, the EEPROM chip is fabricated. The fabricated EEPROM chip is composed of 1 Kbit single polysilicon EEPROM away and high voltage driver circuits. The program and erase characteristics of the fabricated EEPROM chip are evaluated using 'STA-EL421C'. The fabricated n-channel high-voltage LDMOST device operation voltage is over 10 V and threshold voltage window between program and erase states of the memory cell is about 2.0 V.