• Title/Summary/Keyword: Memory Page

Search Result 240, Processing Time 0.021 seconds

High Speed Kernel Data Collection method for Analysis of Memory Workload (메모리 워크로드 분석을 위한 고속 커널 데이터 수집 기법)

  • Yoon, Jun Young;Jung, Seung Wan;Park, Jong Woo;Kim, Jung-Joon;Seo, Dae-Wha
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.11
    • /
    • pp.461-470
    • /
    • 2013
  • This paper proposes high speed kernel data collection method for analysis of memory workload, using technique of direct access to process's memory management structure. The conventional analysis tools have a slower data collection speed and they are lack of scalability due to collection only formalized memory information. The proposed method collects kernel data much faster than the conventional methods using technique of direct collect to process's memory information, page table, page structure in the memory management structure, and it can collect data which user wanted. We collect memory management data of the running process, and analyze its memory workload.

CPWL : Clock and Page Weight based Disk Buffer Management Policy for Flash Memory Systems

  • Kang, Byung Kook;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2020
  • The use of NAND flash memory is continuously increased with the demand of mobile data in the IT industry environment. However, the erase operations in flash memory require longer latency and higher power consumption, resulting in the limited lifetime for each cell. Therefore, frequent write/erase operations reduce the performance and the lifetime of the flash memory. In order to solve this problem, management techniques for improving the performance of flash based storage by reducing write and erase operations of flash memory with using disk buffers have been studied. In this paper, we propose a CPWL to minimized the number of write operations. It is a disk buffer management that separates read and write pages according to the characteristics of the buffer memory access patterns. This technique increases the lifespan of the flash memory and decreases an energy consumption by reducing the number of writes by arranging pages according to the characteristics of buffer memory access mode of requested pages.

Design and Performance Evaluation of a Flash Compression Layer for NAND-type Flash Memory Systems (NAND형 플래시메모리를 위한 플래시 압축 계층의 설계 및 성능평가)

  • Yim Keun Soo;Bahn Hyokyung;Koh Kern
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.4
    • /
    • pp.177-185
    • /
    • 2005
  • NAND-type flash memory is becoming increasingly popular as a large data storage for mobile computing devices. Since flash memory is an order of magnitude more expensive than magnetic disks, data compression can be effectively used in managing flash memory based storage systems. However, compressed data management in NAND-type flash memory is challenging because it supports only page-based I/Os. For example, when the size of compressed data is smaller than the page size. internal fragmentation occurs and this degrades the effectiveness of compression seriously. In this paper, we present an efficient flash compression layer (FCL) for NAND-type flash memory which stores several small compressed pages into one physical page by using a write buffer Based on prototype implementation and simulation studies, we show that the proposed scheme offers the storage of flash memory more than $140\%$ of its original size and expands the write bandwidth significantly.

Framework-assisted Selective Page Protection for Improving Interactivity of Linux Based Mobile Devices (리눅스 기반 모바일 기기에서 사용자 응답성 향상을 위한 프레임워크 지원 선별적 페이지 보호 기법)

  • Kim, Seungjune;Kim, Jungho;Hong, Seongsoo
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1486-1494
    • /
    • 2015
  • While Linux-based mobile devices such as smartphones are increasingly used, they often exhibit poor response time. One of the factors that influence the user-perceived interactivity is the high page fault rate of interactive tasks. Pages owned by interactive tasks can be removed from the main memory due to the memory contention between interactive and background tasks. Since this increases the page fault rate of the interactive tasks, their executions tend to suffer from increased delays. This paper proposes a framework-assisted selective page protection mechanism for improving interactivity of Linux-based mobile devices. The framework-assisted selective page protection enables the run-time system to identify interactive tasks at the framework level and to deliver their IDs to the kernel. As a result, the kernel can maintain the pages owned by the identified interactive tasks and avoid the occurrences of page faults. The experimental results demonstrate the selective page protection technique reduces response time up to 11% by reducing the page fault rate by 37%.

Efficient Page Allocation Method Considering Update Pattern in NAND Flash Memory (NAND 플래시 메모리에서 업데이트 패턴을 고려한 효율적인 페이지 할당 기법)

  • Kim, Hui-Tae;Han, Dong-Yun;Kim, Kyong-Sok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.272-284
    • /
    • 2010
  • Flash Memory differs from the hard disk, because it cannot be overwritten. Most of the flash memory file systems use not-in-place update mechanisms for the update. Flash memory file systems execute sometimes block cleaning process in order to make writable space while performing not-in-place update process. Block cleaning process collects the invalid pages and convert them into the free pages. Block cleaning process is a factor that affects directly on the performance of the flash memory. Thus this paper suggests the efficient page allocation method, which reduces block cleaning cost by minimizing the numbers of block that has valid and invalid pages at a time. The result of the simulation shows an increase in efficiency by reducing more block cleaning costs than the original YAFFS.

Improving Availability of Embedded Systems Using Memory Virtualization

  • Son, Sunghoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.11-19
    • /
    • 2022
  • In this paper, we propose a fault tolerant embedded system using memory redundancy on the full-virtualization based virtual machine monitor. The proposed virtual machine monitor first virtualizes main memory of embedded system utilizing efficient shadow page table scheme so that the embedded system runs as a virtual machine on the virtual machine monitor. The virtual machine monitor makes the backup of the embedded system run as another virtual machine by copying memory contents of the embedded system into memory space of backup system according to predefined schedules. When an error occurs in the target virtual machine, the corresponding standby virtual machine takes the role of target virtual machine and continues its operation. Performance evaluation studies show that such backups and switches of virtual machines are performed with minor performance degradation.

A Flash-based B+-Tree using Sibling-Leaf Blocks for Efficient Node Updates and Range Searches

  • Lim, Seong-Chae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.3
    • /
    • pp.12-24
    • /
    • 2016
  • Recently, as the price per bit is decreasing at a fast rate, flash memory is considered to be used as primary storage of large-scale database systems. Although flash memory shows off its high speeds of page reads, however, it has a problem of noticeable performance degradation in the presence of increasing update workloads. When updates are requested for pages with random page IDs, in particular, the shortcoming of flash tends to impair significantly the overall performance of a flash-based database system. Therefore, it is important to have a way to efficiently update the B+-tree, when it is stored in flash storage. This is because most of updates in the B+-tree arise at leaf nodes, whose page IDs are in random. In this light, we propose a new flash B+-tree that stores up-to-date versions of leaf nodes in sibling-leaf blocks (SLBs), while updating them. The use of SLBs improves the update performance of B-trees and provides the mechanism for fast key range searches. To verify the performance advantages of the proposed flash B+-tree, we developed a mathematical performance evaluation model that is suited for assessing B-tree operations. The performance comparisons from it show that the proposed flash B+-tree provides faster range searches and reduces more than 50% of update costs.

A Multi-Level Flash Translation Layer for Large Capacity Solid State Drives

  • Kim, Yong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.11-18
    • /
    • 2021
  • The flash translation layer(FTL) of SSD maps the logical page number requested from the host to the actual recorded flash memory page number. It is very important to reduce the amount of RAM used to manage the mapping information. In the existing demand-based FTLs, two-level method is applied in which mapping information is also recorded in flash memory pages and only their addresses are managed as a table in RAM. As the capacities of SSDs are growing to tens of terabytes, the amount of RAM for mapping table becomes too large. In this paper, ML-FTL was proposed as a method of managing mapping information in three levels to reduce the amount of RAM required drastically. From an evaluation, the increase in overhead was minimal compared to the conventional two-level method by properly utilizing cache.

Persistent Page Table and File System Journaling Scheme for NVM Storage (비휘발성 메모리 저장장치를 위한 영속적 페이지 테이블 및 파일시스템 저널링 기법)

  • Ahn, Jae-hyeong;Hyun, Choul-seung;Lee, Dong-hee
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.80-90
    • /
    • 2019
  • Even though Non-Volatile Memory (NVM) is used for data storage, a page table should be built to access data in it. And this observation leads us to the Persistent Page Table (PPT) scheme that keeps the page table in NVM persistently. By the way, processors have different page table structures and really operational page table cannot be built without virtual and physical addresses of NVM. However, those addresses are determined dynamically when NVM storage is attached to the system. Thus, the PPT should have system-independent and also address-independent structure and really working system-dependent page table should be built from the PPT. Moreover, entries of PPT should be updated atomically and, in this paper, we describe the design of PPT that meets those requirements. And we investigate how file systems can decrease the journaling overhead with the swap operation, which is a new operation created by the PPT. We modified the Ext4 file system in Linux and experiments conducted with Filebench workloads show that the swap operation enhances file system performance up to 60%.

Index management technique using Small block in storage device based on NAND flash memory

  • Lee, Seung-Woo;Oh, Se-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.1-14
    • /
    • 2020
  • In this paper, we propose to solve the problem of increasing system memory usage due to an increase in the number of mapping information management when using a NAND flash memory-based storage device in an existing sector-based file system. The proposed technique is to store only mapping information in page units based on index blocks and manage them in block units. To this end, the proposed technique uses a sequential offset for storing and managing a plurality of mapping information in one page in a small block, and a reverse offset for a spare page corresponding to a change in mapping information in the block. Through this, the proposed technique has the advantage that the number of block-unit deletions is less than that of the existing technique, and the system memory usage required for mapping information management is low. Reduced by about 32%.