• Title/Summary/Keyword: Memory Injection

Search Result 124, Processing Time 0.024 seconds

The effects of regular exercise on capsaicin-induced pulpal pain and pain-induced changes in passive avoidance learning and memory in rats

  • Raoof, Maryam;Shakoori, Afshin;Kooshki, Razieh;Abbasnejad, Mehdi;Amanpour, Sara
    • The Korean Journal of Pain
    • /
    • v.30 no.4
    • /
    • pp.258-264
    • /
    • 2017
  • Background: Pulpal pain is one of the most common and severe orofacial pain conditions with considerable adverse effects on physiological processes including learning and memory. Regular exercise is known to be effective on cognitive function as well as pain processing in the central nervous system. Here, the possible effects of regular exercise on pulpal pain response as well as pain-induced changes in learning and memory efficiency in rats were investigated. Methods: Twenty-four male Wistar rats were randomly assigned to the control, capsaicin, exercise, and exercise plus capsaicin groups. Rats in exercise groups were forced to run on a treadmill with a moderate exercise protocol for 4 weeks. Capsaicin was used to induce dental pulp pain. Passive avoidance learning and memory performance was assessed by using a shuttle box apparatus. Results: According to the results, regular exercise could decrease the time course of capsaicin-induced pulpal pain (P < 0.001). Moreover, in capsaicin-treated rats, passive avoidance acquisition was impaired as compared to the control (P < 0.05) and exercise (P < 0.001) groups. Additionally, regular exercise before capsaicin injection could attenuate capsaicin-induced memory impairments (P < 0.05). Conclusions: Taken together, the present data showed that regular exercise has inhibitory effects on capsaicin-induced pulpal pain as well as pain-induced cognitive dysfunction in rats.

Krill-Derived Phosphatidylserine Improves TMT-Induced Memory Impairment in the Rat

  • Shim, Hyun-Soo;Park, Hyun-Jung;Ahn, Yong-Ho;Her, Song;Han, Jeong-Jun;Hahm, Dae-Hyun;Lee, Hye-Jung;Shim, In-Sop
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.207-213
    • /
    • 2012
  • The present study examined the effects of krill-derived phosphatidylserine (Krill-PS) on the learning and memory function and the neural activity in rats with trimethyltin (TMT)-induced memory deficits. The rats were administered vehicle (medium-chain triglyceride: MCT) or Krill-PS (50, 100 mg/kg, p.o.) daily for 21 days. The cognitive improving efficacy of Krill-PS in TMT-induced amnesic rats was investigated by assessing the Morris water maze test and by performing choline acetyltransferase (ChAT), acetylcholinesterase (AChE) and cAMP responsive element binding protein (CREB) immunohistochemistry. The rats with TMT injection showed impaired learning and memory of the tasks and treatment with Krill-PS produced a significant improvement of the escape latency to find the platform in the Morris water maze at the $2^{nd}$ and $4^{th}$ day compared to that of the MCT group (p<0.05). In the retention test, the Krill-PS+MCT groups showed increased time spent around the platform compared to that of the MCT group. Consistent with the behavioral data, Krill-PS 50+MCT group significantly alleviated the loss of acetylcholinergic neurons in the hippocampus and medial septum compared to that of the MCT group. Treatment with Krill-PS significantly increased the CREB positive neurons in the hippocampal CA1 area as compared to that of the MCT group. These results suggest that Krill-PS may be useful for improving the cognitive function via regulation of cholinergic marker enzyme activity and neural activity.

Protective effect of Phellodendri Cortex against lipopolysaccharide-induced memory impairment in rats

  • Lee, Bom-Bi;Sur, Bong-Jun;Cho, Se-Hyung;Yeom, Mi-Jung;Shim, In-Sop;Lee, Hye-Jung;Hahm, Dae-Hyun
    • Animal cells and systems
    • /
    • v.16 no.4
    • /
    • pp.302-312
    • /
    • 2012
  • The purpose of this study was to examine whether Phellodendri Cortex extract (PCE) could improve learning and memory impairments caused by lipopolysaccharide (LPS)-induced inflammation in the rat brain. The effect of PCE on modulating pro-inflammatory mediators in the hippocampus and its underlying mechanism were investigated. Injection of LPS into the lateral ventricle caused acute regional inflammation and subsequent deficits in spatial learning ability in the rats. Daily administration of PCE (50, 100, and 200 mg/kg, i.p.) for 21 days markedly improved the LPS-induced learning and memory disabilities in the Morris water maze and passive avoidance test. PCE administration significantly decreased the expression of pro-inflammatory mediators such as tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$, and cyclooxygenase-2 mRNA in the hippocampus, as assessed by RT-PCR analysis and immunohistochemistry. Together, these findings suggest that PCE significantly attenuated LPS-induced spatial cognitive impairment through inhibiting the expression of pro-inflammatory mediators in the rat brain. These results suggested that PCE may be effective in preventing or slowing the development of neurological disorders, including Alzheimer's disease, by improving cognitive and memory function because of its anti-inflammation activity in the brain.

Angelica keiskei Improved Beta-amyloid-induced Memory Deficiency of Alzheimer's Disease (아밀로이드 베타로 유발한 알츠하이머병 모델에서 신선초의 기억력 개선 효과)

  • Lee, Jihye;Kim, Hye-Jeong;Kim, Dong-Hyun;Shin, Bum Young;Jung, Ji Wook
    • The Korea Journal of Herbology
    • /
    • v.34 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • Objectives : Amyloid ${\beta}(A{\beta})$ could induce cognitive deficits through oxidative stress, inflammation, and neuron death in Alzheimer's disease (AD). This study was investigated the effect of Angelica keiskei KOIDZUMI (AK) on memory in $A{\beta}$-induced an AD model. Methods : AK was extracted uses 70% ethanol solvent. Total polyphenol and flavonoids content were obtained by the Folin-Ciocalteu and the Ethylene glycol colorimetric methods, respectively. The antioxidant activities were assessed through free radical scavenging assays using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazolin-6-sulfonic acid) (ABTS) methods. Intracerebroventrical (i.c.v) injection of $A{\beta}$ 1-42 was used to induce AD in male ICR mice, followed by administrations of 5, 10 or 20 mg/kg AK on a daily. Animals were subjected to short and long term memory behavior in Y-maze and passive avoidance test. Results : The total polyphenol and flavonoids contents of the AK extract were $88.73{\pm}6.36mg$ gallic acid equivalent/g, $84.21{\pm}5.04mg$ rutin equivalent/g, respectively. The assays of DPPH and ABTS revealed that AK extract in treated concentrations (31.25, 62.5, 125, 250, 500, $1000{\mu}g/m{\ell}$) increased antioxidant activity in a dose-dependent manner. Oral administration of AK extract significantly reversed the $A{\beta}$ 1-42-induced decreasing of the spontaneous alternation in the Y-maze test and $A{\beta}$ 1-42-induced shorting of the step-through latency in the passive avoidance test. Conclusions : The findings suggest that AK indicated the antioxidant protective effects against $A{\beta}$-induced memory deficits, and therefore a potential lead natural therapeutic drug or agent for AD.

A New EEPROM with Side Floating Gates Having Different Work Function from Control Gate

  • Youngjoon Ahn;Sangyeon Han;Kim, Hoon;Lee, Jongho;Hyungcheol Shin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.157-163
    • /
    • 2002
  • A new flash EEPROM device with p^+ poly-Si control gate and n^+ poly-Si floating side gate was fabricated and characterized. The n^+ poly-Si gate is formed on both sides of the p^+ poly-Si gate, and controls the underneath channel conductivity depending on the number of electron in it. The cell was programmed by hot-carrier-injection at the drain extension, and erased by direct tunneling. The proposed EEPROM cell can be scaled down to 50 nm or less. Shown were measured programming and erasing characteristics. The channel resistance with the write operation was increased by at least 3 times.

Hardware Implementation of Optical Fault Injection Attack-resistant Montgomery exponentiation-based RSA (광학 오류 주입 공격에 강인한 몽고메리 지수승 기반 RSA 하드웨어 구현)

  • Lee, Dong-Geon;Choi, Yong-Je;Choi, Doo-Ho;Kim, Minho;Kim, Howon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.76-89
    • /
    • 2013
  • In this paper, we propose a novel optical fault detection scheme for RSA hardware based on Montgomery exponentiation, which can effectively detect optical fault injection during the exponent calculation. To protect the RSA hardware from the optical fault injection attack, we implemented integrity check logic for memory and optical fault detection logic for Montgomery-based multiplier. The proposed scheme is considered to be safe from various type of attack and it can be implemented with no additional operation time and small area overhead which is less than 3%.

Linearization of DFB LD by using Cross Gain Modulation of Reflective SOA in Radio-over-Fiber Link

  • Hong, Moon-Ki;Han, Sang-Kook;Lee, Sang-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.158-161
    • /
    • 2007
  • We proposed a novel linearization technique for a DFB LD in the RoF link. The proposed scheme is based on the cross gain modulation(XGM) effect of a reflective semiconductor optical amplifier(RSOA) with light injection. We experimentally demonstrated and evaluated the enhanced CIR performance using the proposed linearization scheme.

The Neuroprotective Effect of White Ginseng (Panax ginseng C. A. Meyer) on the Trimethyltin (TMT)-Induced Memory Deficit Rats (Trimethyltin으로 유도된 기억장애 흰쥐에서 백삼의 신경보호효과)

  • Lee, Seung-Eun;Shim, In-Sop;Kim, Geum-Soog;Yim, Sung-Vin;Park, Hyun-Jung;Shim, Hyun-Soo;Ye, Min-Sook;Kim, Seung-Yu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.6
    • /
    • pp.456-463
    • /
    • 2011
  • The present study examined the effects of Korean white ginseng (WG, Panax ginseng C. A. Meyer) on the learning and memory function and the neural activity in rats with trimethyltin (TMT)-induced memory deficits. The rats were administered with saline or WG (WG 100 or 300 mg/kg, p.o.) daily for 21 days. The cognitive improving efficacy of WG on the amnesic rats, which was induced by TMT, was investigated by assessing the Morris water maze test and by performing immunohistochemistries on choline acetyltransferase (ChAT), acetylcholinesterase (AchE), cAMP responsive element binding protein (CREB) and brain derived neurotrophic factor (BDNF). The rats treated with TMT injection (control group) showed impaired learning and memory of the tasks, but the rats treated with TMT injection and WG administration produced significant improvement of the escape latency to find the platform in the Morris water maze at the 2nd and 4th days compared to that of the control group. In the retention test, the WG 100 and WG 300 groups showed significantly increased crossing number around the platform compared to that of the control group (p < 0.001). Consistently with the behavioral data, result of immunohistochemistry analysis showed that WG 100 mg/kg significantly alleviated the loss of BDNF-ir neurons in the hippocampus compared to that of the control group (p < 0.01). Also, treatment with WG has a trend to be increased the cholinergic neurons in the hippocampal CA1 and CA3 areas as compared to that of the control group. These results suggest that WG may be useful for improving the cognitive function via regulation of neurotrophic activity.

Korean Mistletoe (Viscum album var. coloratum) Inhibits Amyloid β Protein (25-35)-induced Cultured Neuronal Cell Damage and Memory Impairment

  • Jang, Ji Yeon;Kim, Se-Yong;Song, Kyung-Sik;Seong, Yeon Hee
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.134-140
    • /
    • 2015
  • The present study aims to investigate the effect of methanol extract of Korean mistletoe (KM; Viscum album var. coloratum), on amyloid $\beta$ protein ($A\beta$) (25-35), a synthetic 25-35 amyloid peptide, -induced neurotoxicity in cultured rat cerebral cortical neurons and memory impairment in mice. Exposure of cultured neurons to $10{\mu}M$ $A\beta$ (25-35) for 24 h induced a neuronal cell death, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. KM (10, 30 and $50{\mu}g/ml$) significantly inhibited the $A\beta$ (25-35)-induced apoptotic neuronal death. KM ($50{\mu}g/ml$) inhibited 10 μM Aβ (25-35)-induced elevation of intracellular calcium concentration ([Ca2+]i), which was measured by a fluorescent dye, Fluo-4 AM. Glutamate release into medium and generation of reactive oxygen species (ROS) induced by $10{\mu}M$ $A\beta$ (25-35) were also inhibited by KM (10, 30 and $50{\mu}g/ml$). These results suggest that KM may mitigate the $A\beta$ (25-35)-induced neurotoxicity by interfering with the increase of [Ca2+]i and then inhibiting glutamate release and generation of ROS in cultured neurons. In addition, orally administered KM (25 and 50 mg/kg, 7 days) significantly prevented memory impairment induced by intracerebroventricular injection of $A\beta$ (25-35) (8 nmol). Taken together, it is suggested that anti-dementia effect of KM is due to its neuroprotective effect against $A\beta$ (25-35)-induced neurotoxicity and that KM may have therapeutic role in prevention of the progression of Alzheimer's disease.