• 제목/요약/키워드: Melanoma Cell

검색결과 691건 처리시간 0.031초

Melanoma B16F10 cell에 의해서 유도된 mouse모델에서 마늘 헥산 추출물의 암전이에 억제 효과 (Anti-metastatic Effect of Garlic Hexane Extract on Lung Metastasis Induced by Melanoma B16F10 Cells in Mice)

  • 고민정;라자세커 시타르만;왕자옥;이매;곽정호;박영훈;손병구;강점순;최영환
    • 생명과학회지
    • /
    • 제26권2호
    • /
    • pp.259-264
    • /
    • 2016
  • 암전이는 현재까지 적당한 치료제가 거의 없었기 때문에 암에 의한 사망의 주요한 원인 중의 하나로 인식되고 있다. 최근 본 연구팀은 마늘 추출물과 순수분리한 성분에 대한 암전이 억제 시험 결과 마늘의 추출물 또는 성분이 암전이를 억제시켰으며, 역학조사에서도 마늘을 많이 섭취한 사람은 암의 발생을 억제시키는 것으로 보고되어 있다, 본 연구의 암전이 실험에서는 C57BL/6 mouse의 꼬리 정맥에 melanoma B16F10세포를 주사하여 폐에 전이를 유도하였다. 암세포 주사 1일 후에 마늘의 헥산 추출물 50, 100 및 200 mg/kg body weight를 2일 간격으로 21일 동안 구강투여 한 다음 암전이 억제효과를 조사하였다. GHE를 처리하지 않은 대조구에서는 폐에서 암 colony가 97.4±30.2으로 대량 생성되었다. GHE를 50, 100 및 200 mg/kg의 농도로 경구투여시에 암전이 빈도는 각각 6.93, 46.80 및 50.53% 억제하였다. 또한 100 mg/kg body weight 경구투여 시에는 폐로 암전이 억제율이 약 53% 이상으로 매우 높았다. 폐에서 melanoma cell colony의 발생율과 면적은 마늘 헥산 추출물의 농도가 높을수록 감소하였다. 결론적으로 C57BL/6 mice의 암전이 모델에서 마늘 헥산추출물의 구강투여는 폐에 암전이를 억제시켰으나, 향후 그 기작에 대한 연구가 수행되어야 할 것으로 생각된다.

한국 홍삼의 면역활성 및 항암효과에 관한 실험적 연구 (An Experimental Study on the Effect of Immunopotential and the Anticancer Effect of Red Ginseng Extract)

  • 장성강;김주헌
    • Journal of Ginseng Research
    • /
    • 제18권3호
    • /
    • pp.151-159
    • /
    • 1994
  • To evaluate the anticarcinogenic effect and its mechanism of red ginseng, the mice were treated with red ginseng and received subcutaneous Bl6 melanoma cell line injection on the back. Tumor incidence was same (100%) both in water and red ginseng-treated groups, but tumor production was delayed in red ginseng-treated group. Survival time was somewhat longer in red ginseng-treated group. The histopathological findings were similar in both groups, but lymphocytic infiltration around the tumor and melanin production in the tumor cells were prominent in the red ginseng-treated group. Flow cytometric analysis on T lymphocytes and natural killer cells revealed increased $T_H$/$T_S$ ratio and increased NK cells in red ginseng-treated group. These results suggest that the anticarcinogenic effect of red ginseng may be exerted by the increased cell-mediated immunity and natural killer cell activity.

  • PDF

약침용(藥鍼用) 봉독성분(蜂毒成分) 중(中) Apamin의 항암효과(抗癌效果)와 MAP-Kinase 신호전달체계에 관한 연구(硏究) (The Anti-Cancer Effect of Apamin in Bee-Venom on Melanoma cell line SK-MEL-2 and Inhibitory Effect on the MAP-Kinase Signal Pathway)

  • 김윤미;이재동;박동석
    • Journal of Acupuncture Research
    • /
    • 제18권4호
    • /
    • pp.101-115
    • /
    • 2001
  • Objective : To characterize the antitumorigenic potential of Apamin, one of the major components of bee venom, its effects on cell proliferation and the mitogen-activated protein kinase (MAPK) signal transduction pathway were characterized using the human melanoma cell line SK-MEL-2. Methods & Results : Cell counting analysis for cell death demonstrated that consistent with a previous results, SK-MEL-2 cells treated with $0.5-2.0{\mu}g/ml$ of Apamin showed no recognizable cytotoxic effect whereas detectable induction of cell death was identified at concentrations over $5.0{\mu}g/ml$. [3H]thymidine incorporation assay for cell proliferation demonstrated that DNA replication of SK-MEL-2 cells is inhibited by Apamin in a dose- and time-dependent manner. To explore whether Apamin-induced growth suppression is associated with the MAPK signaling pathway, phosphorylation of Erk, a function mediator of MAPK growth-stimulating signal, was examined Western blot assay using a phospho-specific Erkl/2 antibody. A significant increase of Erkl/2 phosphorylation level was observed in Apamin-treated cells compared with untreated control cells. Qantitative RT-PCR analysis revealed that Apamin inhibit expression of MAPK downstream genes such as c-Jun, c-Fos, and cyclin D1 but not expression of MAPK pathway component genes including Ha-Ras, c-Raf-1, MEK1, and Erk. Conclusion : It is strongly suggested that the antitumorigenic activity of Apamin might result in part from its inhibitory effect on the MAPK signaling pathway in human melanoma cells SK-MEL-2.

  • PDF

쥐참외뿌리 추출물의 항산화 및 피부 세포에서의 세포 독성 연구 (Antioxidant and Cytotoxicity in Skin Cell of the Trichosanthis Cucumeroidis Radix Extract)

  • 유선희;문지선
    • 한국응용과학기술학회지
    • /
    • 제39권3호
    • /
    • pp.417-422
    • /
    • 2022
  • 쥐참외뿌리 추출물이 항산화 활성 및 피부 세포에서의 독성을 확인하여, 피부에 효과적으로 사용할 수 있는 기능성 소재로써의 활용 가능성을 확인해 보고자 하였다. 쥐참외뿌리 추출물의 항산화 활성의 지표가 되는 총 폴리페놀과 총 플라보노이드 함량을 확인하였고, 피부에서의 Neutral red assay를 이용하여 세포 독성을 확인하였다. 연구 결과, 총 폴리페놀과 총 플라보노이드의 함량은 농도 의존적으로 증가하였다. 섬유아 세포인 HDF cell에서의 높은 생존율이 확인되었으며, B16F10 melanoma cel와 RAW 264.7 cell에서는 5 ㎍/mL부터 세포 생존율이 유의하게 낮아지는 것이 확인되었다. 본 연구 결과는 쥐참외뿌리 추출물의 항산화 활성 및 피부 세포에서의 기초적인 자료로 사용가능할 것으로 사료되어 진다.

Salicylamide Enhances Melanin Synthesis in B16F1 Melanoma Cells

  • Ito, Yusuke;Sato, Kazuomi
    • Biomolecules & Therapeutics
    • /
    • 제29권4호
    • /
    • pp.445-451
    • /
    • 2021
  • Salicylamide, a non-steroidal anti-inflammatory drug (NSAID), is used as an analgesic and antipyretic agent. We have previously shown that several NSAIDs have anti-melanogenic properties in B16F1 melanoma cells. In contrast, we have found that salicylamide enhances melanin contents in B16F1 melanoma cells; however, the underlying mechanism is not known. Therefore, we investigated the mechanism through which salicylamide stimulates melanogenesis. Interestingly, salicylamide enhanced diphenolase activity in a cell-free assay. Western blotting and real-time RT-PCR revealed that salicylamide increased tyrosinase expression via transcriptional activation of the Mitf gene. Together, our results indicate that salicylamide could be used as an anti-hypopigmentation agent for skin and/or hair.

Baicalein Inhibits the Migration and Invasion of B16F10 Mouse Melanoma Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Choi, Eun-Ok;Cho, Eun-Ju;Jeong, Jin-Woo;Park, Cheol;Hong, Su-Hyun;Hwang, Hye-Jin;Moon, Sung-Kwon;Son, Chang Gue;Kim, Wun-Jae;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • 제25권2호
    • /
    • pp.213-221
    • /
    • 2017
  • Baicalein, a natural flavonoid obtained from the rhizome of Scutellaria baicalensis Georgi, has been reported to have anticancer activities in several human cancer cell lines. However, its antimetastatic effects and associated mechanisms in melanoma cells have not been extensively studied. The current study examined the effects of baicalein on cell motility and anti-invasive activity using mouse melanoma B16F10 cells. Within the noncytotoxic concentration range, baicalein significantly inhibited the cell motility and invasiveness of B16F10 cells in a concentration-dependent manner. Baicalein also reduced the activity and expression of matrix metalloproteinase (MMP)-2 and -9; however, the levels of tissue inhibitor of metalloproteinase-1 and -2 were concomitantly increased. The inhibitory effects of baicalein on cell motility and invasiveness were found to be associated with its tightening of tight junction (TJ), which was demonstrated by an increase in transepithelial electrical resistance and downregulation of the claudin family of proteins. Additionally, treatment with baicalein markedly reduced the expression levels of lipopolysaccharide-induced phosphorylated Akt and the invasive activity in B16F10 cells. Taken together, these results suggest that baicalein inhibits B16F10 melanoma cell migration and invasion by reducing the expression of MMPs and tightening TJ through the suppression of claudin expression, possibly in association with a suppression of the phosphoinositide 3-kinase/Akt signaling pathway.

3D Bioprinted GelMA/PEGDA Hybrid Scaffold for Establishing an In Vitro Model of Melanoma

  • Duan, Jiahui;Cao, Yanyan;Shen, Zhizhong;Cheng, Yongqiang;Ma, Zhuwei;Wang, Lijing;Zhang, Yating;An, Yuchuan;Sang, Shengbo
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권4호
    • /
    • pp.531-540
    • /
    • 2022
  • Due to the high incidence of malignant melanoma, the establishment of in vitro models that recapitulate the tumor microenvironment is of great biological and clinical importance for tumor treatment and drug research. In this study, 3D printing technology was used to prepare GelMA/PEGDA composite scaffolds that mimic the microenvironment of human malignant melanoma cell (A375) growth and construct in vitro melanoma micro-models. The GelMA/PEGDA hybrid scaffold was tested by the mechanical property, cell live/dead assay, cell proliferation assay, cytoskeleton staining and drug loading assay. The growth of tumor cells in two- and three-dimensional culture systems and the anti-cancer effect of luteolin were evaluated using the live/dead staining method and the Cell Counting Kit-8 (CCK-8) method. The results showed a high aggregation of tumor cells on the 3D scaffold, which was suitable for long-term culture. Cytoskeleton staining and immunofluorescent protein staining were used to evaluate the degree of differentiation of tumor cells under 2D and 3D culture systems. The results indicated that 3D bioprinted scaffolds were more suitable for tumor cell expansion and differentiation, and the tumor cells were more aggressive. In addition, luteolin was time- and dose-dependent on tumor cells, and tumor cells in the 3D culture system were more resistant to the drug.

얌빈 추출물의 항산화 효능과 멜라닌 생성 억제효과 (Antioxidant Activity and Melanin Inhibitory Effects of Yambean (Pachyrhizus erosus) Extract)

  • 이아름;김교남;김혜옥;송원정;노성수
    • 대한본초학회지
    • /
    • 제32권2호
    • /
    • pp.57-64
    • /
    • 2017
  • Objectives : Yam bean (Pachyrhizus erosus) possess various nutrients, it has been widely used as traditional cosmetic material in Indonesia. The aim of this study was to investigate the anti-oxidant activity and the anti-melanogenic effect of Yambean (Pachyrhizus erosus) extract and its fractions. Methods : The anti-oxidant activity of yam bean extract assessed based on total polyphenol, flavonoid contents, DPPH and ABTS radical scavenging assay. To evaluate anti-melanogenic effects and cytotoxicity of Yambean extract and its fractions, B16F10 melanoma cell was used. Results : In results, total polyphenol content of yam bean water extract (YW) and Yambean 70% ethanol extract (YE) were $1.18{\pm}0.03mg/g$ (mg of gallic acid/g of sample), $1.16{\pm}0.01mg/g$. Total flavonoid contents of YW, YE were $3.55{\pm}0.06mg/g$ (mg of naringin/g of sample), $1.78{\pm}0.03mg/g$. Moreover, YE scavenged DPPH and ABTS effectively in $4mg/m{\ell}$ compared to YW. Cytotoxicity of YE and its fractions in B16F10 melanoma cell was measured using MTT assays. It had no cytotoxicity up to $500{\mu}g/m{\ell}$. Melanin accumulation in B16F10 melanoma cell was induced using alpha-melanocyte stimulating hormone (${\alpha}-MSH$) and 3-isobutyl-1-methylxanthine (IBMX). B16F10 melanoma cell treated with $10-500{\mu}g/m{\ell}$ YE and hexane, ethyl acetate, butanol, $H_2O$ fractions for 24h. Non treated B16F10 melanoma cell (Control) markedly increased melanin contents. In contrast, YE ethylacetate fraction effectively suppressed melanin accumulation in a dose-dependent manner. Conclusion : In conclusion, these results suggest that Yambean extract has the potential as a cosmetic material which possess anti-oxidant and anti-melanogenic activities.

Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis

  • Ahn, Jun-Ho;Hwang, Sung-Hee;Cho, Hyun-Soo;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.302-310
    • /
    • 2019
  • Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and -resistant (A375P/Mdr with acquired resistance and SK-MEL-2 with intrinsic resistance) melanoma cell lines, to reveal the genes and pathways potentially involved in intrinsic and acquired resistance to BRAF inhibitors. A total of 546 differentially expressed genes (DEGs), including 239 up-regulated and 307 down-regulated genes, were identified in both intrinsic and acquired resistant cells. Gene ontology (GO) analysis revealed that the top 10 biological processes associated with these genes included angiogenesis, immune response, cell adhesion, antigen processing and presentation, extracellular matrix organization, osteoblast differentiation, collagen catabolic process, viral entry into host cell, cell migration, and positive regulation of protein kinase B signaling. In addition, using the PAN-THER GO classification system, we showed that the highest enriched GOs targeted by the 546 DEGs were responses to cellular processes (ontology: biological process), binding (ontology: molecular function), and cell subcellular localization (ontology: cellular component). Ingenuity pathway analysis (IPA) network analysis showed a network that was common to two BRAF inhibitorresistant cells. Taken together, the present study may provide a useful platform to further reveal biological processes associated with BRAF inhibitor resistance, and present areas for therapeutic tool development to overcome BRAF inhibitor resistance.

Autophagy-Dependent Survival of Mutant B-Raf Melanoma Cells Selected for Resistance to Apoptosis Induced by Inhibitors against Oncogenic B-Raf

  • Ahn, Jun-Ho;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • 제21권2호
    • /
    • pp.114-120
    • /
    • 2013
  • Most patients with mutant B-Raf melanomas respond to inhibitors of oncogenic B-Raf but resistance eventually emerges. To better understand the mechanisms that determine the long-term responses of mutant B-Raf melanoma cells to B-Raf inhibitor, we used chronic selection to establish B-Raf (V600E) melanoma clones with acquired resistance to the new oncogenic B-Raf inhibitor UI-152. Whereas the parental A375P cells were highly sensitive to UI-152 ($IC_{50}$ < $0.5{\mu}M$), the resistant sub-line (A375P/Mdr) displayed strong resistance to UI-152 ($IC_{50}$ < $20{\mu}M$). Immunofluorescence analysis indicated the absence of an increase in the levels of P-glycoprotein multidrug resistance (MDR) transporter in A375P/Mdr cells, suggesting that resistance was not attributable to P-glycoprotein overexpression. In UI-152-sensitive A375P cells, the anti-proliferative activity of UI-152 appeared to be due to cell-cycle arrest at $G_0/G_1$ with the induction of apoptosis. However, we found that A375P/Mdr cells were resistant to the apoptosis induced by UI-152. Interestingly, UI-152 preferentially induced autophagy in A375P/Mdr cells but not in A375P cells, as determined by GFP-LC3 puncta/cell counts. Further, autophagy inhibition with 3-methyladenine (3-MA) partially augmented growth inhibition of A375P/Mdr cells by UI-152, which implies that a high level of autophagy may protect UI-152-treated cells from undergoing growth inhibition. Together, our data implicate high rates of autophagy as a key mechanism of acquired resistance to the oncogenic B-Raf inhibitor, in support of clinical studies in which combination therapy with autophagy targeted drugs is being designed to overcome resistance.