• Title/Summary/Keyword: Melanin inhibitors

Search Result 65, Processing Time 0.025 seconds

Inhibitors of Melanogenesis from the Roots of Peucedanum praeruptorum (전호의 멜라닌 생성 억제 물질)

  • Kim, Won-Chan;Jin, Mu-Hyun;Kim, Ho-Jeong;Kang, Sang-Jin;Kang, Seh-Hoon;Jung, Min-Hwan;Lim, Young-Hee;Kim, Cheong-Taek
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.4 s.131
    • /
    • pp.395-398
    • /
    • 2002
  • A chemical investigation of Peucedanum praeruptorum has resulted in the isolation of 3 khellactone derivatives, which have inhibitory effects on melanogenesis in Bl6 mouse melanoma cell lines. The khellactone derivatives were isolated from the crude extract of the roots of Pecedanum praeruptorum by a combination of adsorption chromatography and HPLC. The structlues of isolated compounds were identified as 3',4'- diangeloyl-cis-khellactone, 3'-angeloyl- 4'- senecioyl-cis-khel- lactone and,3', 4'-disenecioyl-cis-khellactone by $^1H\;NMR$, $^{13}C\;NMR$ and mass spectral studies and by comparisons of spectral data with reported literatures.

Differential Effect of Harmalol and Deprenyl on Dopamine-Induced Mitochondrial Membrane Permeability Change in PC12 Cells

  • Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 2004
  • Opening of the mitochondrial permeability transition pore has been recognized to be involved in cell death. The present study investigated the effect of ${\beta}$-carbolines (harmaline and harmalol) and deprenyl on the dopamine-induced change in the mitochondrial membrane permeability and cell death in differentiated PC12 cells. Cell death due to 250 4{\mu}$M dopamine was inhibited by caspase inhibitors (z-IETD.fmk, z-LEHD.fmk and z-DQMD.fmk) and antioxidants (N-acetylcysteine, ascorbate, superoxide dismutase, catalase and carboxy-PTIO). ${\beta}$-Carbolines prevented the dopamine-induced cell death in PCl2 cells, while deprenyl did not inhibit cell death. ${\beta}$-Carbolines decreased the condensation and fragmentation of nuclei caused by dopamine in PC12 cells. ${\beta}$-Carbolines inhibited the decrease in mitochondrial transmembrane potential, cytochrome c release, formation of reactive oxygen species and depletion of GSH caused by dopamine in PC12 cells, whereas deprenyl did not decrease dopamine-induced mitochondrial damage. ${\beta}$-Carbolines, deprenyl and antioxidants depressed the formation of nitric oxide and melanin in dopamine-treated PC12 cells. The results suggest that cell death due to dopamine PC12 cells is mediated by caspase-8, -9 and -3. Unlike deprenyl, ${\beta}$-carbolines may attenuate the dopamineinduced cell death in PC12 cells by suppressing change in the mitochondrial membrane permeability through inhibition of the toxic action of reactive oxygen and nitrogen species.

Phenoloxidases and Photomorphogenesis in Coprinus congregatus (Coprinus congregatus의 분화와 Phenoloxidase와의 관계)

  • 최형태
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.157-167
    • /
    • 1987
  • The have been many reports that phenoloxidase are correlated with development in many fungi. C. congregatus, one of nushroom-forming basidiomycetes, which requires light for its development also has phenoloxidases. In C. congragatus, there are two sets of membrane-associated phenoloxidase (PHO I and PHO II) which are differentiated by their isozyme patterns, and each enzyme set consists of two different subtrate specific enzyme protein; o-tolidine reacting enzyme, and DOPA reacting enzyme. PHO I which is localized by a protoplast-concanavalin A technique by using a new solidifying agent, Pluronic Polyol F 127, instead of agar appears in the vegetative hyphae, and PHO II appears at the early primordial stage on agar and at the sclerotial stage of liquid shake cultures. Inhibition of PHO I with the enzyme inhibitors inhibits mushroom formation as well as melanization of the vegetative hyphae at concentrations which do not inhibit the vegetative growth. PHO I deficient mutants do not form mushrooms or melanins, and the mutants show abnormal nuclear migration patterns. PHO II has roles; possibly cementing the adjacent hyphae during the actual three dimensonal structure formation, and melanizing mushrooms and sclerotia. The possible roles of PHO I in the light reception complex and in melanin formation, the function of malanin, and possible roles of postulated post translational modifying enzymes which regulate the phenoloxidases, nuclear migration pattern, and self-nonself recognition mechanism are discussed.

  • PDF

Aloesin and Arbutin Inhibit Typrosinase Activity in a Synergistic Manner via a Different Action Mechanism

  • Jin, Ying-Hua;Lee, Suk-Jin;Chung, Myung-Hee;Park, Jeong-Hill;Park, Young-In;Cho, Tae-Hyeong;Lee, Seung-Ki
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.232-236
    • /
    • 1999
  • In this study, we present evidence that cotreatment of aloesin and arbutin inhibits tyrosinase activity in a synergistic manner by acting through a different action mechanism. Aloesin or arbutin similarly inhibited enzyme activity of human- and mushroom-tyrosinases with an IC50 value of 0.1 or 0.04 mM, respectively. Lineweaver-Burk plots of the enzyme kinetics data showed that aloesin inhibited tyrosinase activity noncompetitively with a Ki value of 5.3 mM, whereas arbutin did it competitively (Maeda, 1996). We then examined whether cotreatment of these agents inhibits the tyrosinase activity in a synergistic manner. The results showed that 0.01 mM aloesin in the presence of 0.03 mM arbutin inhibited activity of mushroom by 80% of the control value and the reverse was also true. The inhibitory effects were calculated to be synergistic according to the B rgi method. Taken together, we suggest that aloesin along with arbutin inhibits in synergy melanin production by combined mechanisms of noncompetitive and competitive inhibitions of tyrosinase activity.

  • PDF

Anti-inflammatory and Tyrosinase Inhibition Effects of Amaranth (Amaranthus spp L.) Seed Extract (아마란스 씨앗 추출물의 항염 및 Tyrosinase 억제 효과)

  • Yi, Mi-Ran;Kang, Chang-Hee;Bu, Hee-Jung
    • Korean Journal of Plant Resources
    • /
    • v.30 no.2
    • /
    • pp.144-151
    • /
    • 2017
  • This study examined the anti-inflammatory and whitening effects of Amaranth (Amaranthus spp L.) seed extract. Amaranthus spp L. seeds were extracted using 70% ethanol and then fractionated sequentially with n-hexane, dichloromethan, ethyl acetate and butanol. For the study of anti-inflammatory activity in RAW 264.7 cells, EtOAc fraction of Amaranthus spp L. seeds significantly inhibited nitrogen oxide production as well as the protein level of iNOS. Furthermore, EtOAc fraction of Amaranthus spp L. seeds inhibited expression of $TNF-{\alpha}$, PGE2 and the protein level of COX-2 in a dose-dependent manner. Inaddition, the tyrosinase inhibitory activities of the Amaranthus spp L. seed 70% ethanol extract and subfractions were also measured to see if these extracts can be used as an ingredient for whitening cosmetics. Tyrosinase is an oxidase that is a rate-limiting enzyme for controlling the production of melanin. Therefore, tyrosinase inhibitors have become increasingly important in cosmetics and medical products with regards to hyperpigmentation. EtOAc fraction of Amaranthus spp L. seeds showed mushroom tyrosinase inhibitory activity in a dose-dependent manner. This activity was more potent than that of a positive control cynandione A. These results suggest that Amaranthus spp L. seeds may be a valuable natural ingredient for the food and cosmetics industries.

Effect of Kenpaullone, a Specific Inhibitor of GSK3${\beta}$, on Melanin Synthesis in B16 Melanoma and Human Melanocytes (GSK3${\beta}$의 선택적 저해제인 Kenpaullone의 B16 멜라노마 및 인간 멜라노사이트에서의 영향)

  • Kim, Hae-Jong;Lee, You-Ree;Nguyen, Dung Hoang;Lee, Hyang-Bok;Kim, Eun-Ki
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.3
    • /
    • pp.211-218
    • /
    • 2011
  • Effects of Kenpaullone, a specific inhibitor of GSK3${\beta}$, on melanin synthesis in B16 melanoma cells and human melanocytes were investigated. Kenpaullone showed a melanogenesis stimulation activity in a concentrationdependent manner in murine B16 melanoma cells and human melanocytes without any significant effects on cell proliferation. Tyrosinase activity was increased 48 h after treatment of B16 cells with Kenpaullone. The protein expression level of tyrosinase was dose-dependently enhanced after the treatment with Kenpaullone. At the same time, the expression level of tyrosinase mRNA was also increased after addition of Kenpaullone. The stimulatory effect of Kenpaullone mainly resulted from increased expression of tyrosinase. These findings suggest that the application of GSK3${\beta}$ inhibitors may be a potential therapeutic agent for the treatment of hypopigmentation disorder.

Comparative Modeling of Human Tyrosinase - an Important Target for Developing Skin Whitening Agents (피부 미백제의 타겟 단백질인 인간 티로시나제의 3차원 구조 상동 모델링)

  • Choi, Jongkeun;Suh, Joo Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5350-5355
    • /
    • 2012
  • Human tyrosinase (hTyr) catalyzes the first and rate limiting step in the biosynthesis of a skin color determinant, melanin. Although a number of cosmetic companies have tried to develop hTyr inhibitors for several decades, absence of 3D structure of hTyr make it impossible to design or screen inhibitors by structure-based approach. Therefore, we built a 3D structure by comparative modeling technique based on the crystal structure of tyrosinase from Bacillus megaterium to provide structural information and to search new hit compounds from database. Our model revealed that two copper atoms of active site located deep inside and were coordinated with six strictly conserved histidine residues coming from four-helix-bundle. Substrate binding site had narrow funnel like shape and its entrance was wide and exposed to solvent. In addition, hTyr-tyrosine and hTyr-kojic acid, a well-known inhibitor, complexes were modeled with the guide of solvent accessible surface generated by in-house software. Our model demonstrated that only phenol group or its analogs could fill the binding site near the nuclear copper center, because inside of binding site had narrow shape relatively. In conclusion, the results of this study may provide helpful information for designing and screening new anti-melanogenic agents.

Three Melanogenesis Inhibitors from the Roots of Veratrum nigrum (여로의 멜라닌 생성 억제 물질)

  • Kim, Ho-Jeong;Kang, Sang-Jin;Kang, Seh-Hoon;Kim, Chul-Hwan;Jung, Min-Hwan;Jin, Mu-Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.4 s.131
    • /
    • pp.399-403
    • /
    • 2002
  • Three melanogenesis inhibitors were isolated from the roots and rhizomes of Veratrum nigrum L. and were identified as (3S,20S,25S)-22,26-iminocholesta-5,22(N)-dien-3-ol (verazine), (3S,2OR,25S)-22,26-iminocholesta-5,22(N)-dien-3-ol (epi-verazine) and (3R,23R)-14,15,16,17- tetradehydroveratraman-3,23-diol (veratramine) on the basis of their spectroscopic data. It was turned out that these compounds did not directly inhibit tyrosinase activity, the key enzyme responsible for the formation of melanin pigment while these compounds showed strong inhibition on the melanogenesis in B16 F1 mouse melanoma $(IC_{50}<1\;{\mu}g/ml)$. Due to the strong inhibitory activity and safety compared to current whitening agents such as arbutin, kojic acid and AHA, the compound can be a good candidate for new skin whitening agents.

Studies of Inhibitory Mechanism on Melanogenesis by Partially Purified Asiasari radix in α-MSH Stimulated B16F10 Melanoma Cells (세신추출물이 α-MSH 자극에 의한 B16F10 세포의 멜라닌생성에 미치는 영향)

  • Jang, Ji-Yeon;Kim, Ha-Neui;Kim, Yu-Ri;Kim, Byung-Woo;Choi, Yung-Hyun;Choi, Byung-Tae
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1617-1624
    • /
    • 2010
  • Recently, it has been found that Asiasari radix showed a hypopigmenting effect on melanogenesis through activation of mitogen-activated protein kinase (MEK)/extracellular signal-activated kinase (ERK) in B16F10 melanoma cells. However, the hypopigmenting effect of A. radix on the $\alpha$-melanocyte stimulating hormone ($\alpha$-MSH)-stimulated melanogenesis has remained unknown. The purpose of this study was to investigate the inhibitory mechanism of the partially purified A. radix (PPAR)-induced hypopigmentating effects on $\alpha$-MSH-stimulated melanogenesis in B16F10 mouse melanoma cells. PPAR strongly inhibited tyrosinase activity and leads to decreased melanin synthesis in $\alpha$-MSH-stimulated B16F10 melanoma cells. PPAR also decreased the $\alpha$-MSH-induced over-expression of the melanogenic enzymes, tyrosinase, tyrosinase-related protein (TRP)-1, dopachrome tautomerase (Dct) and microphthalmia-associated transcription factor (MITF). We further showed that PPAR inhibits $\alpha$-MSH-induced melanogenesis via phosphorylation of MEK/ERK and PI3K/Akt, and that their activation was blocked by MEK inhibitors, PD98059 and PI3K inhibitors, LY294002 in $\alpha$-MSH-stimulated B16F10 melanoma cells. These results suggest that PPAR inhibits $\alpha$-MSH-induced melanogenesis by activation of MEK/ERK and PI3K/Akt through MITF degradation, which may lead to down-regulation of tyrosinase.

Potent whitening effects of rutin metabolites (루틴 대사체의 미백 효능)

  • Kim, Ji Hye;Kang, Nam Joo
    • Food Science and Preservation
    • /
    • v.22 no.4
    • /
    • pp.607-612
    • /
    • 2015
  • The aim of this research was to investigate the whitening effects of rutin and rutin metabolites including 3,4-dihydroxyphenyl acetic acid (DHPAA), 3-hydroxyphenyl acetic acid (HPAA), 3,4-dihydroxytolene (DHT) and homovanillic acid (HVA). The potent whitening effect of rutin and rutin metabolites were determined by mushroom tyrosinase inhibition assay and expressed as the half maximal inhibitory concentration ($IC_{50}$) against tyrosinase activity in vitro. The HVA showed the highest inhibitory effect ($IC_{50}=37.10{\mu}M$) of tyrosinase activity, followed by DHPAA ($IC_{50}=45.87{\mu}M$), HPAA ($IC_{50}=50.96{\mu}M$), rutin ($IC_{50}=57.98{\mu}M$), and DHT ($IC_{50}=66.09{\mu}M$), respectively. To evaluate cell cytotoxicity, MTT assay was performed with JB6 P+ mouse epidermal cells and expressed as a relative percentage of untreated control. The results showed that rutin and rutin metabolites had no cytotoxic effects on JB6 P+ cells up to $100{\mu}M$ except for DHT (up to $50{\mu}M$). These results suggests that rutin metabolites may be utilized as a potential tyrosinase inhibitors and the whitening agents for the future.