• Title/Summary/Keyword: Megasonic cleaning

Search Result 24, Processing Time 0.032 seconds

Study of T Type Waveguide in Single Wafer Megasonic Cleaning for Post CMP (T형의 waveguide를 이용한 Post CMP용 메가소닉 세정장치에 대한 연구)

  • Kim, Tae-Gon;Lee, Yang-Lae;Lim, Eui-Su;Kang, Kook-Jin;Kim, Hyun-Se;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.364-365
    • /
    • 2006
  • Transverse some wave was generated by T type waveguide for single wafer cleaning application T type megasonic waveguide was analyzed by acoustic pressure measurements and particle removal efficiency. Compared to conventional longitudinal waves, not like longitudinal waves, transverse waves showed changes of direction and phase which increased the cleaning efficiency.

  • PDF

Acoustic Analysis of High-Frequency Ultrasonic Cleaner

  • Choi, Sunghoon;Kim, Jin Oh;Kim, Yong-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1E
    • /
    • pp.49-56
    • /
    • 1997
  • Ultrasonic cleaning at high frequency around 1 MHz, called megasonic cleaning, is commonly used to remove particles less than 1 ㎛ by generating high frequency accelerations on the cleaning objects. Cleaning is performed in an ultrasonically-excited liquid contained in a double-structured container. Ultrasonic waves generated by piezoelectric transducers propagate in the outer container and are transmitted through the inner container. The bottom of the inner container is inclined to make oblique incidence of the ultrasonic wave in order to raise the efficiency of the transmission through the bottom plate. This work deals with the efficiency of the transmission, which directly affects the cleaning performance. The transmission characteristics of the ultrasonic wave in the megasonic cleaner have been obtained analytically and numerically for the variations of some parameters, such as the thickness and inclined angle of the bottom plate of the inner container and the chemical ratio and temperature of the cleaning liquid. The calculated results have yielded the optimum cleaning condition in terms of the sound power transmitted into the cleaning liquid.

  • PDF

Development of Wafer Cleaning Equipment Using Nano Bubble and Megasonic Ultrasound (나노 버블과 메가소닉 초음파를 이용한 반도체 웨이퍼 세정장치 개발)

  • Nohyu Kim;Sang Hoon Lee;Sang Yoon;Yong-Rae Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.66-71
    • /
    • 2023
  • This paper describes a hybrid cleaning method of silicon wafer combining nano-bubble and ultrasound to remove sub-micron particles and contaminants with minimal damage to the wafer surface. In the megasonic cleaning process of semiconductor manufacturing, the cavitation induced by ultrasound can oscillate and collapse violently often with re-entrant jet formation leading to surface damage. The smaller size of cavitation bubbles leads to more stable oscillations with more thermal and viscous damping, thus to less erosive surface cleaning. In this study, ultrasonic energy was applied to the wafer surface in the DI water to excite nano-bubbles at resonance to remove contaminant particles from the surface. A patented nano-bubble generator was developed for the generation of nano-bubbles with concentration of 1×109 bubbles/ml and nominal nano-bubble diameter of 150 nm. Ultrasonic nano-bubble technology improved a contaminant removal efficiency more than 97% for artificial nano-sized particles of alumina and Latex with significant reduction in cleaning time without damage to the wafer surface.

  • PDF

Acoustic waves in a high-frequency ultrasonic cleaner (고주파 초음파 세정기의 파동 해석)

  • 최성훈;김진오;김용훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.656-661
    • /
    • 1997
  • Ultrasonic cleaning at high frequency near 1MHz, called megasonic cleaning, is commonly used to remove particles less than 1.mu.m by generating accelerations on them. Ultrasonic waves generated from piezoelectric transducers are transmitted through a non-metallic inner container which is used to isolate a cleaning object from metallic ions. The transmission characteristics of a double-structured megasonic cleaner on the variations of parameters such as the thickness and oblique angle of a inner container, chemical ratio of a cleaning agent and temperature and transmittivity are investigated. The results are used to determine an optimum cleaning condition.

  • PDF

Development of a Far Field type Megasonic for Nano Particle Removing (나노입자 제거용 Far Field 메가소닉 개발)

  • Lee, Yanglae;Kim, Hyunse;Lim, Euisu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1193-1201
    • /
    • 2013
  • Improved far field type(improved type) megasonic applicable to the cleaning equipment of single wafer processing type has been developed. In this study, to improve the uniformity of acoustic pressure distribution(APD), we utilize far field with relatively uniform APD, piezoelectric ceramic with a triangle hole in its center to prevent standing wave resulted from radial mode, and reflected wave from the wall of waveguide. On the basis of these methods, two analysis models of improved type were designed to which piezoelectric ceramic of different shape of electrode attached, and APD were analyzed by means of finite element method, and then one of them was selected by analysis results, finally, the selected model was fabricated. Test results show that the fabricated is better in the uniformity of APD than the imported and the conventional, also the fabricated shows high particle removal efficiency of 92.3% using DI water alone as a cleaning solution.

A Study on Acoustic Pressure Characteristics of Spot Spray Type Megasonic for Semiconductor Cleaning (반도체 세정용 Spot Spray Type 메가소닉의 음압특성에 관한 연구)

  • Lee, Yanglae;Kim, Hyunse;Lim, Euisu;Woo, Jeong-Ju;Kim, Chang-Dae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In this study, to analyze characteristics of acoustic pressure for spot spray type megasonic, FEM analysis was performed for variable parameters based on the structure of commercial one. and 2 models of transmitter were designed and fabricated, and then acoustic pressure distribution(APD) of the transmitter was measured and compared to the commercial. The results of this experiment show that maximum acoustic pressure of model 1 was higher to 1.6 times compared to the commercial, and model 2 was higher to 1.23 times. Through the course of this study, design technology of transmitter has been developed by means of FEM analysis and experiment for characteristics of acoustic pressure. Also, it is expected to be useful in the development of high power spray type megasonic that is necessary with advance in semiconductor technology.

Effect of Brush Treatment and Brush Contact Sequence on Cross Contaminated Defects during CMP in-situ Cleaning

  • Kim, Hong Jin
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.239-244
    • /
    • 2015
  • Chemical mechanical polishing (CMP) is one of the most important processes for enabling sub-14 nm semiconductor manufacturing. Moreover, post-CMP defect control is a key process parameter for the purpose of yield enhancement and device reliability. Due to the complexity of device with sub-14 nm node structure, CMP-induced defects need to be fixed in the CMP in-situ cleaning module instead of during post ex-situ wet cleaning. Therefore, post-CMP in-situ cleaning optimization and cleaning efficiency improvement play a pivotal role in post-CMP defect control. CMP in-situ cleaning module normally consists of megasonic and brush scrubber processes. And there has been an increasing effort for the optimization of cleaning chemistry and brush scrubber cleaning in the CMP cleaning module. Although there have been many studies conducted on improving particle removal efficiency by brush cleaning, these studies do not consider the effects of brush contamination. Depending on the process condition and brush condition, brush cross contamination effects significantly influence post-CMP cleaning defects. This study investigates brush cross contamination effects in the CMP in-situ cleaning module by conducting experiments using 300mm tetraethyl orthosilicate (TEOS) blanket wafers. This study also explores brush pre-treatment in the CMP tool and proposes recipe effects, and critical process parameters for optimized CMP in-situ cleaning process through experimental results.