• Title/Summary/Keyword: Medical isotope

Search Result 91, Processing Time 0.025 seconds

Shielding Calculations of Accelerator Facility for Medical Isotope Production using MCNPX Code (MCNPX 코드를 이용한 의료용 방사성동위원소 생산을 위한 가속기 시설의 방사선차폐 및 선량 계산)

  • Seo Kyu-Seok;Kim Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.210-214
    • /
    • 2004
  • Since production of radioactive isotope for using PET, a lot of neutrons were produced. The produced neutrons were mainly shielded by concrete facility. Secondary photons are generated and emitted from the concrete shielding wall of the PET cyclotron since the proton-generated neutrons are thermalized and absorbed in the concrete wall and emit secondary radiations, i.e., photons. This study calculated neutron dose and photon dose at outside of the accelerator facility using MCNPX code. As results of the calculation, total dose were calculated less than limited dose by law.

  • PDF

Influence of Iodinated Magnetic Resonance Contrast Media and Isotope 99mTc on Changes of Computed Tomography Number

  • Kim, Sang-Beom;Lee, Jin-Hyeok;Ahn, Jae-Ouk;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.302-307
    • /
    • 2015
  • The purpose of the study was to identify how isotope and magnetic resonance imaging (MRI) contrast media impact on noise to computed tomography (CT) examination. For the study, divide the phantoms to two groups: 1) saline, saline + different kinds of contrast agent without $^{99m}Tc$ administration; 2) $^{99m}Tc$ administration: saline, saline + different kinds of contrast agent with $^{99m}Tc$ administration. CT contrast agent was used for Iopamidol$^{(R)}$ and Dotarem. And MRI contrast agent was used for Primovist$^{(R)}$ and Gadovist$^{(R)}$. To obtain an image, we used CT scanner. With an obtained image, we set the $1cm^2$ region of interest in the middle of bottle to measure the noise and CT number. As a result, there was no difference in CT number before and after inserting $^{99m}Tc$ into all contrast media including Normal Saline. However, when it comes to Noise, there was a difference before and after inserting $^{99m}Tc$ into every contrast media except MRI contrast media such as Primovist$^{(R)}$ and Gadovist$^{(R)}$.

Study in vivo metabolism using nuclear medical examination of the dose rate reduction (체내대사를 이용한 핵의학적 검사의 선량률 저감에 관한 연구)

  • Kang, Yong-Gil;Na, Soo-Kyung;Hong, Jin-Woong;Lee, Gui-Won;Kim, Nak-Sang
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • The purpose of this study was administered to the body for examination and treatment, high-energy radioactive isotope(F-18, I-131) in vitro discharge experiments. Increasing exposed dose of radiation to health professionals is caused by the increase of PET/CT use and a radioactive isotope. Therefore, the high-energy isotope F-18 and I-131 after administration about using Metabolite excretion was studied. As a results of this study, patients had plenty of fluids for testing and treatment alone administered radiopharmaceuticals can be more than twice as fast excretion induced emissions. Also was able to get a better image space to reduce the dose rate.

  • PDF

Flow Analysis for Fission Moly Target Cooling in HANARO (하나로 Fission Moly 표적 냉각에 대한 유동해석)

  • Park, Yong-Chul
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.502-507
    • /
    • 2003
  • The HANARO, multi-purpose research reactor, 30 MWth open-tank-in-pool type, is under normal operation since it reached the initial critical in February 1995. The HANARO is used for fuel performance tests, radio isotope productions, reactor material performance tests, silicone semiconductor productions and etc. Specially, the HANARO is planning to produce a fission moly-99 of radio isotopes, a mother nuclide of Tc-99m, a medical isotope and is under developing a target handling tool for loading and unloading those at a flow tube (OR-5). The target should be sufficiently cooled in the flow tube without an interference with the cooling of the others and an induction of extremely vibration. This topic is described an analectic analysis for the cooling characteristics of the fission moly-99 target to find the minimum cooling water. It was confirmed through the analysis results that the minimum cooling water, about 2.717 kg/s flew through the flow tube under the worst case that the guide tube got no perforating holes for cooling water to pass through the holes and that the target was safely cooled under about seventy percent (70%) of the maximum allowable temperature of the target.

  • PDF

Design of RF coupler for KIRAMS-13;Korea Institute of Radiological & Medical Sciences-13

  • Jung, In-Su;An, Dong-Hyun;Kim, Yu-Seok;Yang, Tae-Gun;Kim, Jea-Hong;Jang, Hong-Seok;Hong, Bong-Hwan;Lee, Min-Yong;Hong, Sung-Seok;Chai, Jong-Seo;Oh, Bong-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2203-2205
    • /
    • 2003
  • KIRAMS-13, the first medical cyclotron developed by domestic technique, is used to produce radio-isotope such as $^{18}F$ whose life time is relatively short through test operation. For high-power operation of charged particle accelerators, the power coupler must withstand enormous stresses due to charging induced by high RF power passing through. High-power RF testing with peak power in excess of 30kW has been performed on prototype power coupler for KIRAMS-13 normal conducting cavities. CST MICROWAVE STUDIO(CST MWS) is used for fundamental RF Design, and power coupler is manufactured according to fundamental power coupler design requisite. The qualification of the couplers has occurred for the time being only in a limited set of conditions as the available RF system and control instrumentation are under improvement.

  • PDF

Ir-192 Brachytherapy Planning of Brain Tumor (Ir-192 방사성소선원에 의한 뇌종양의 치료계획)

  • Choi Tae Jin;Park Jeong Ho;Kim Ok Bae;Suh Soo Ji
    • Radiation Oncology Journal
    • /
    • v.6 no.2
    • /
    • pp.277-281
    • /
    • 1988
  • Although widely used in external beam treatment planning, computed tomography scans are infrequent in incranial tumors by implanting of Radioactive isotope. This incranial brachytherapy has only become possible by using CT scans and stereotaxic operation methods. The coincidence of single source and tumor axes in brachytherapy is very important to determine the therapeutic dosages. Eventhough using the CT scan, according to spatial location of tumor tying, the section of tumor will be seen enlargement, cause the tumor will be cut off with slight angle to its axes. Correct analysis of tumor size from source is required for rotated axes in analytical geometry.

  • PDF

Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target

  • Lee, Seung-Kon;Beyer, Gerd J.;Lee, Jun Sig
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.613-623
    • /
    • 2016
  • Molybdenum-99 ($^{99}Mo$) is the most important isotope because its daughter isotope, technetium-99m ($^{99m}Tc$), has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of $^{99}Mo$, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of $^{99}Mo$ technology developments. Most of the industrial-scale $^{99}Mo$ processes have been based on the fission of $^{235}U$. Recently, important issues have been raised for the conversion of fission $^{99}Mo$ targets from highly enriched uranium to low enriched uranium (LEU). The development of new LEU targets with higher density was requested to compensate for the loss of $^{99}Mo$ yield, caused by a significant reduction of $^{235}U$ enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission $^{99}Mo$ production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the $^{99}Mo$ production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

Review on Exercise Training and Protein Intake in Skeletal Muscle Protein Metabolism (운동훈련과 단백질 섭취에 따른 골격근 단백질 대사: 안정성 동위원소 추적체법을 이용한 연구결과를 중심으로)

  • Shin, Yun-A;Kim, Il-Young
    • Exercise Science
    • /
    • v.26 no.2
    • /
    • pp.103-114
    • /
    • 2017
  • INTRODUCTION: Regulation of skeletal muscle protein mass is implicated not only in exercise performance but in metabolic health. Exercise in combination with nutrition, particularly dietary protein/amino acid intake, are the pragmatic approach that effectively induces muscle anabolic response (i.e., muscle hypertrophy) through regulating protein synthesis and breakdown. PURPOSE: The purpose of this review was to summarize available data on the effect of exercise intervention and amino acids intake on muscle protein synthesis and breakdown and provide an insight into development of an effective exercise intervention and amino acids supplements, applicable to training practice. METHODS: In this review, we have reviewed currently available data mainly from stable isotope tracer studies with respect to the effect of exercise intervention and protein or amino acid supplement on muscle protein anabolic response. CONCLUSIONS: Taken together, exercise alone may not be effective in achieving a positive net muscle protein balance due to the fact that protein breakdown still exceeds protein synthesis until nutrition intake such as protein/amino acids. It appears that muscle anabolic response increases in proportional to the amount of protein intake up to 20 - 35 g depending on quality of protein, age, differences on exercise intensity, duration, and frequency, and individual's training status

Analysis of Air Discharge and Disused Air Filters in Radioisotope Production Facility

  • Kim, Sung Ho;Lee, Bu Hyung;Kwon, Soo Il;Kim, Jae Seok;Kim, Gi-sub;Park, Min Seok;Jung, Haijo
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.156-161
    • /
    • 2016
  • When air discharged from a radioisotope production facility is contaminated with radiation, the public may be exposed to radiation. The objective of this study is to manage such radiation exposure. We measured the airborne radioactivity concentration at a 30 MeV cyclotron radioisotope production facility to assess whether the exhaust gas was contaminated. Additionally, we investigted the radioactive contamination of the air filter for efficient air purification and radiation safety control. To measure the airborne radiation concentration, specimens were collected weekly for 4 h after the beginning of the radioisotope production. Regarding the air purifier, five specimens were collected at different positions of each filter-pre-filter, high-efficiency particulate air filter, and charcoal filter-installed in the cyclotron production room. The concentrations of F-18, I-123, I-131, and Tl-201 generated in the radioiodine production room were $13.5Bq/m^3$, $27.0Bq/m^3$, $0.10Bq/m^3$, and $11.5Bq/m^3$, respectively; the concentrations of F-18, I-123, and I-131 produced in the radioisotope production room were $0.05Bq/m^3$, $16.1Bq/m^3$, and $0.45Bq/m^3$, correspondingly; and those of F-18, I-123, I-131, and Tl-201 generated in the accelerator room were $2.07Bq/m^3$, $53.0Bq/m^3$, $0.37Bq/m^3$, and $0.15Bq/m^3$, respectively. The maximum radiation concentration of I-123 generated in the radioiodine production room was 1,820 Bq/g, which can be disposed after 2 days. The maximum radiation concentration of Tl-202 generated in the radioisotope production room was 205 Bq/g, and this isotope must be stored for 53 days. The I-123 generated in the radioiodine production room had a maximum concentration of 1,530 Bq/g and must be stored for 2 days. The maximum radiation concentration of Na-22 generated in the radioisotope production room was 0.18 Bq/g and this isotope must be disposed after 827 days. To manage the exhaust, the efficiency of air purification must be enhanced by selecting an air purifier with a long life and determining the appropriate replacement time by examining the differential pressure through systematic measurements of the airborne radiation contamination level.

Vanadium Oxide Microbolometer Using ZnO Sandwich Layer

  • Han, Myung-Soo;Kim, Dae Hyeon;Ko, Hang Ju;Kim, Heetae
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.178-183
    • /
    • 2015
  • Optical, electrical and structural properties of VOx/ZnO/VOx thin film are studied. The VOx/ZnO/VOx multilayer is deposited by using a radio frequency (RF) sputtering system. The VOx/ZnO/VOx thin film shows the high temperature coefficient of resistance (TCR) of $-3.12%/^{\circ}C$ and the low sheet resistance of about 80 $k{\Omega}/sq$ at room temperature. The responsivity and detectivity of the bolometer are measured as a function of modulation frequency.