• 제목/요약/키워드: Mechanical modeling

Search Result 3,114, Processing Time 0.026 seconds

A Study on the Robust Control Gain Selection Scheme of a High-Speed/High-Accuracy Position Control System (고속/정밀 위치 제어 시스템의 강인한 제어게인 선정에 관한 연구)

  • Shin, Ho-Joon;Yun, Seok-Chan;Jang, Jin-Hee;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.747-753
    • /
    • 2001
  • This paper presents a dynamic modeling and a robust PID controller design process for the wire bonder head assembly. For the modeling elements, the system is divided into electrical system, magnetic system, and mechanical system. Each system is modeled by using the bond graph method. The PID controller is used for high speed/high accuracy position control of the wire bonder assembly. The Taguchi method is used to evaluate the more robust PID gain combinations. This study makes use of an L18 array with three parameters varied on three levels. Computer simulations and experimental results show that the designed PID controller provides more improved signal to noise ratio and reduced sensitivity than the conventional PID controller.

  • PDF

Structural Safety Evaluation of Hydraulic Steering System for Ship (선박용 유압 조타 시스템의 구조적 안전성 평가)

  • Lee, Moonhee;Son, Insoo;Yang, Changgun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.661-667
    • /
    • 2020
  • The optimal shape modeling of core parts through 3D modeling and structural analysis for the development of small and medium-sized ships. The goal is to improve the efficient structure of the hydraulic system for controlling the rudder among the core steering parts in small and medium-sized ships. Through 3D modeling and structural analysis, a new concept of tiller parts and a double-acting hydraulic cylinder control system were proposed and operational structural stability was evaluated. Structural analysis of the three different tiller designs that can be replaceable onto existing fishing vessels was conducted to derive the final shapes. The emphasis was placed on evaluating the structural stability of the key drive components, the tiller, pin, and cylinder rodin the maximum torque condition of the hydraulic cylinder.

Development of a multiphysics numerical solver for modeling the behavior of clay-based engineered barriers

  • Navarro, Vicente;Asensio, Laura;Gharbieh, Heidar;la Morena, Gema De;Pulkkanen, Veli-Matti
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1047-1059
    • /
    • 2019
  • This work describes the development of a numerical module with a multiphysics structure to simulate the thermo-hydro-chemo-mechanical behavior of compacted bentonites. First, the conceptual model, based on the state-of-the-art formulation for clay-based engineered barriers in deep geological repositories, is described. Second, the advantages of multiphysics-based modules are highlighted. Then, the guidelines to develop a code using such tools are outlined, presenting an example of implementation. Finally, the simulation of three tests that illustrate the behavior of compacted bentonites assesses the scope of the developed code. The satisfactory results obtained, and the relative simplicity of implementation, show the opportunity of the modeling strategy proposed.

Enhanced generalized modeling method for compliant mechanisms: Multi-Compliant-Body matrix method

  • Lim, Hyunho;Choi, Young-Man
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.503-515
    • /
    • 2022
  • The multi-rigid-body matrix method (MRBMM) is a generalized modeling method for obtaining the displacements, forces, and dynamic characteristics of a compliant mechanism without performing inner-force analysis. The method discretizes a compliant mechanism of any type into flexure hinges and rigid bodies by implementing a multi-body mass-spring model using coordinate transformations in a matrix form. However, in this method, the deformations of bodies that are assumed to be rigid are inherently omitted. Consequently, it may yield erroneous results in certain mechanisms. In this paper, we present a multi-compliant-body matrix-method (MCBMM) that considers a rigid body as a compliant element, while retaining the generalized framework of the MRBMM. In the MCBMM, a rigid body in the MRBMM is segmented into a certain number of body nodes and flexure hinges. The proposed method was verified using two examples: the first (an XY positioning stage) demonstrated that the MCBMM outperforms the MRBMM in estimating the static deformation and dynamic mode. In the second example (a bridge-type displacement amplification mechanism), the MCBMM estimated the displacement amplification ratio more accurately than several previously proposed modeling methods.

Surface Catalytic Recombination in Hypersonic Flow: A Review of the Numerical Methods (극초음속 유동에서의 표면 촉매 재결합: 수치해석적 기법 리뷰)

  • Ikhyun Kim;Yosheph Yang
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • This paper provides a general overview of surface catalytic recombination in hypersonic flow. The surface catalytic recombination phenomena is elaborated in terms of its general overview and numerical modeling associated with it. The general overview of the surface catalytic recombination phenomena describes the elementary surface reactions for the surface catalytic and the role of the surface catalytic recombination efficiency in the heat transfer determination. In the numerical modeling, the surface catalytic recombination is described based on the stagnation-point boundary layer analysis, and finite-rate surface reaction modeling. Throughout this overview manuscript, a general understanding of this phenomena is obtained and can be used as foundation for deeper application with the numerical computational fluid dynamics (CFD) flow solver to estimate the surface heat transfer in the hypersonic vehicles.

Numerical simulation of the femur fracture under static loading

  • El Sallah, Zagane Mohammed;Smail, Benbarek;Abderahmane, Sahli;Bouiadjra, B. Bachir;Boualem, Serier
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.405-412
    • /
    • 2016
  • Bone is a living material with a complex hierarchical structure that gives it remarkable mechanical properties. Bone constantly undergoes mechanical. Its quality and resistance to fracture is constantly changing over time through the process of bone remodeling. Numerical modeling allows the study of the bone mechanical behavior and the prediction of different trauma caused by accidents without expose humans to real tests. The aim of this work is the modeling of the femur fracture under static solicitation to create a numerical model to simulate this element fracture. This modeling will contribute to improve the design of the indoor environment to be better safe for the passengers' transportation means. Results show that vertical loading leads to the femur neck fracture and horizontal loading leads to the fracture of the femur diaphysis. The isotropic consideration of the bone leads to bone fracture by crack propagation but the orthotropic consideration leads to the fragmentation of the bone.

Application to Stabilizing Control of Nonlinear Mobile Inverted Pendulum Using Sliding Mode Technique

  • Choi, Nak-Soon;Kang, Ming-Tao;Kim, Hak-Kyeong;Park, Sang-Yong;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • This paper presents a sliding mode controller based on Ackermann's formula and applies it to stabilizing a two-wheeled mobile inverted pendulum in equilibrium. The mobile inverted pendulum is a system with an inverted pendulum on a mobile cart. The dynamic modeling of the mobile inverted pendulum was established under the assumptions of a cart with no slip and a pendulum with only planar motion. The proposed sliding mode controller was based upon a class of nonlinear systems whose nonlinear part of the modeling can be linearly parameterized. The sliding surface was obtained in an explicit form using Ackermann's formula, and then a control law was designed from reachability conditions and made the sliding surface attractive to the equilibrium state of the mobile inverted pendulum. The proposed controller was implemented in a Microchip PIC16F877 micro-controller. The developed overall control system is described. The simulation and experimental results are presented to show the effectiveness of the modeling and controller.

Modeling & Dynamic Analysis for Four Wheel Steering Vehicles (4WS 차량의 모델링 및 동적 해석)

  • Jang, J.H.;Jeong, W.S.;Han, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.66-78
    • /
    • 1995
  • In this paper, we address vehicle modeling and dynamic analysis of four wheel steering systems (4WS). 4WS is one of the devices used for the improvement of vehicle maneuverability and stability. All research done here is based on a production vehicle from a manufacturer. To study actual system response, a three dimensional, full vehicle model was created. In past research of this type, simple, two dimensional, bicycle vehicle models were typically used. First, we modelled and performed a dynamic analysis on a conventional two wheel steering(2WS) vehicle. The modeling and analysis for this model and subsequent 4WS vehicles were performed using ADAMS(Automatic Dynamic Analysis of Mechanical Systems) software. After the original vehicle model was verified with actual experiment results, the rear steering mechanism for the 4WS vehicle was modelled and the rear suspension was changed to McPherson-type forming a four wheel independent suspension system. Three different 4WS systems were analyzed. The first system applied a mechanical linkage between the front and rear steering mechanisms. The second and third systems used, simple control logic based on the speed and yaw rate of the vehicle. 4WS vehicle proved dynamic results through double lane change test.

  • PDF

Prediction of Consumed Electric Power on a MQL Milling Process using a Kriging Meta-Model (크리깅 메타모델을 이용한 MQL 밀링공정의 소비전력 예측 연구)

  • Jang, Duk-Yong;Jung, Jeehyun;Seok, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.353-358
    • /
    • 2015
  • Energy consumption reduction has become an important key word in manufacturing that can be achieved through the efficient and optimal use of raw materials and natural resources, and minimization of the harmful effects on nature or human society. The successful implementation of this concept can only be possible by considering a product's entire life cycle and even its disposal from the early design stage. To accomplish this idea with milling, minimum quantity lubrication (MQL) strategies and cutting conditions are analyzed through process modeling and experiments. In this study, a model to predict the cutting energy in the milling process is used to find the cutting conditions, which minimize the cutting energy through a Kriging meta-modeling process. The MQL scheme is developed first to reduce the amount of cutting oil and costs used in the cutting process, which is then employed for the entire modeling and experiments.

Simulation and Modeling of Polyethylene/Clay Nanocomposite for Dielectric Application

  • Zazoum, Bouchaib;David, Eric;Ngo, Anh Dung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.175-181
    • /
    • 2014
  • In this paper, the simulation and modeling of a polyethylene/clay nanocomposite were undertaken to predict the nanocomposite's dielectric behavior and to help design a nanocomposite material with optimum electrical properties for electrotechnical or electronic applications. A 3-D simulation model using the finite elements method was employed in order to study the effective permittivity and electric field distribution of two-phase nanocomposite materials for ordered and random distributions of inclusions in a low-loss host matrix such as polyethylene. The influence of the dispersion of reinforcing particles, and of the permittivity and radius of the inclusions, was analysed. The simulation results were compared with alternative, known theoretical solutions obtained from classical models, and were found to be in good agreement. The numerical results also indicate that for fixed volume fractions of nanoparticles the effective permittivity of the mixture, for ordered and random distributions, does not vary with the degree of dispersion. The variation of the effective permittivity with the particle radius is shown, using numerical data, to agree with the analytical modules.