Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT) (No.NRF-2021R1G1A1006344).
References
- Scott, C. D., 1985, Effect of Nonequilibrium and Wall Catalysis on Shuttle Heat Transfer, Journal of Spacecraft and Rockets. 22(5) 489-498. https://doi.org/10.2514/3.25059
- Yamamoto, Y., 1995, Recent Comparison of Aerothermodynamics Results by CFD and FEM Coupling Analysis with OREX Flight Experiment, 13th NAL Symposium on Aircraft Computational Aerodynamics SP-29. 27-39.
- Muylert, J., Walpot, L., 2007, Aerothermodynamicreentry Flight Experiments Expert, Flight Experiments for Hypersonic Vehicle Development RTO-EN-AVT-130 Paper 13. 1-34.
- Barbato, M., Giordano, D., 1996, Comparison of Catalytic Wall Conditions for Hypersonic Flow, Journal of Spacecraft and Rockets 33(5) 620-627. https://doi.org/10.2514/3.26811
- Stewart, D., 1996, Determination of Surface Catalytic Efficiency for Thermal Protection Materials - Room Temperature to Their Upper Use Limit, AIAA Paper 1996-1863.
- Pidan, S., Auweter-Kurtz, M., 2005, Recombination Coefficients and Spectral Emissivity of Silicon Carbide-Based Thermal Protection Materials, Journal of Thermophysics and Heat Transfer 19(4) 566-571. https://doi.org/10.2514/1.12814
- Herdrich, G., Fertig, M., 2005, Oxidation Behavior of Siliconcarbide-Based Materials by Using New Probe Techniques, Journal of Spacecraft and Rockets 42(5) 817-824. https://doi.org/10.2514/1.12265
- Cinquegrana, D., Votta, R., 2019, Continuum Breakdown and Surface Catalysis Effects in NASA Arc Jet Testing at SCIROCCO, Aerospace Science and Technology 88 258-272. https://doi.org/10.1016/j.ast.2019.03.026
- Park, G., 2005, Oxygen Catalytic Recombination on Copper Oxide in Tertiary Gas Mixtures, Journal of Spacecraft and Rockets 50(3) 540-555. https://doi.org/10.2514/1.A32312
- Kim, I., Park, G., 2019, Experimental Study of Surface Roughness Effect on Oxygen Catalytic Recombination, International Journal of Heat and Mass Transfer 138 916-922. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.049
- Balat-Pichelin, M., Badie, J. M.., 2003, Recombination Coefficient of Atomic Oxygen on Ceramic Materials under Earth Re-entry Conditions by Optical Emission Spectroscopy, Chemical Physics 291(2) 181-194. https://doi.org/10.1016/S0301-0104(03)00152-6
- Barbato, M., Bruno, C., 1996, Heterogenous Catalysis: Catalytic, Theory, Models, and Applications. Capitelli M (ed) Molecular Physics and Hypersonic Flows, NATO ASI Series, 139-160.
- Goulard, R., 1958, On Catalytic Recombination Rates in Hypersonic Stagnation Heat Transfer, Journal of Jet Propulsion 28(11) 737-745. https://doi.org/10.2514/8.7444
- Melin, G. A., Madix, R. J., 1971, Energy Accommodation During Hydrogen Atom Recombination on Metal Surfaces, Transactions of the Faraday Society 67 2711-2719. https://doi.org/10.1039/tf9716702711
- Halpern, B., Rosner, D. E., 1978, Chemical Energy Accommodation at Catalyst Surfaces Flow Reactor studies of the Association of Nitrogen Atoms on Metals at High Temperatures. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 74 188.
- Carleton, K. L., Marinelli W. J., 1992, Spacecraft Thermal Energy Accommodation from Atomic Recombination, Journal of Thermophysics and Heat Transfer 6(4) 650-655. https://doi.org/10.2514/3.11547
- Balat-Pichelin, M., Kovalev, V. L., 2008, Effect of the Incomplete Accommodation of the Heterogeneous Recombination Energy on Heat Fluxes to a Quartz Surface, Fluid Dynamics 43(5) 830-838. https://doi.org/10.1134/S0015462808050189
- Bedra, L., Balat-Pichelin, M., 2005, Comparative Modeling Study and Experimental Results of Atomic Oxygen Recombination on Silica-Based Surfaces at High Temperature, Aerospace Science and Technology 9(4) 318-328. https://doi.org/10.1016/j.ast.2005.01.011
- Scott, C. D., 1980, Catalytic Recombination of Nitrogen and Oxygen on High Temperature Reusable Surface Insulation, AIAA Paper 1980-1477.
- Kolodziej, P., Stewart, D., 1987, Nitrogen Recombination on High Temperature Reusable Surface Insulation and the Analysis of Its Effect on Surface Catalysis, AIAA Paper 1987-1637.
- Rakich, J. V., Stewart, D. A., 1982, Catalytic Efficiency of the Space Shuttle Heat Shield, AIAA Paper 1982-0944.
- Zoby, E., Simmonds, A., Gupta, R., 1984, Temperature-Dependent Reaction Rate Expression for Oxygen Recombination at Shuttle Entry Conditions, AIAA Paper 1984-224.
- Gupta, R. N., 1996, Reevaluation of Flight-Derived Surface Recombination Rate Expressions for Oxygen and Nitrogen, Journal of Spacecraft and Rockets 33(3) 451-453. https://doi.org/10.2514/3.26783
- Marschall, J., MacLean, M., 2015, Surface Chemistry in Non-Equilibrium Flows, Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances, American Institute of Aeronautics and Astronautics, Virginia.
- Lees, L., 1956, Laminar Heat Transfer Over Blunt-Nosed Bodies at Hypersonic Flight Speed, Journal of Jet Propulsion 26(4) 259-269. https://doi.org/10.2514/8.6977
- Fay, J. A., Riddell, F. R., 1958, Theory of Stagnation Point Heat Transfer in Dissociated Air, Journal of the Aerospace Sciences 25(2) 73-85. https://doi.org/10.2514/8.7517
- Panerai, F., Chazot, O., 2012, Characterization of Gas/Surface Interactions for Ceramic Matrix Composites in High Enthalpy, Low Pressure Air Flow, Materials Chemistry and Physics 134(2-3) 597-607. https://doi.org/10.1016/j.matchemphys.2012.03.036
- Massuti-Ballester, B., Pidan, S., 2015, Recent Catalysis Measurements at IRS, Advances in Space Research 56(4) 742-765. https://doi.org/10.1016/j.asr.2015.04.028
- Joiner, N., Esser, B., 2016, Development of an Innovative Validation Strategy of Gas-Surface Interaction Modelling for Re-entry Applications, CEAS Space Journal 8(4) 237-255. https://doi.org/10.1007/s12567-016-0124-6
- Yang, Y., Kim, I., 2019, Experimental and Numerical Study of Oxygen Catalytic Recombination of SiC-Coated Material, International Journal of Heat and Mass Transfer 143 118510.
- Kim, I., Yang, Y., 2021, Catalytic Recombination Assessment on Carbon in Dissociated Shock Tube Flow, Acta Astronautica 181 52-60. https://doi.org/10.1016/j.actaastro.2021.01.003
- Inger, G. R., Elder, J., 1991, Recombination-Dominated Nonequilibrium Heat Transfer to Arbitrary Catalytic Hypersonic Vehicles, Journal of Thermophysics and Heat Transfer 5(4) 449-455. https://doi.org/10.2514/3.286
- Armenise, I., Capitelli, M., 2000, Nonequilibrium Vibrational Kinetics of an O/O Mixture Hitting a Catalytic Surface, Journal of Spacecraft and Rockets 37(3) 318-323. https://doi.org/10.2514/2.3581
- Armenise, I., Capitelli, M., 2001, Nonequilibrium Vibrational Kinetics of Air Hitting a Catalytic SiO Surface, Journal of Spacecraft and Rockets 38(4) 482-487. https://doi.org/10.2514/2.3730
- Yang, Y., Park, G., 2019, Analysis of Catalytic Heat Transfer for a Multi-Species Gas Mixture, International Journal of Heat and Mass Transfer 137 1088-1102. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.172
- Yang, Y., Petha Sethuraman, V. R., Kim, H., Kim, J.G., Determination of Surface Catalysis on Copper Oxide in a Shock Tube Using Thermochemical Nonequilibrium CFD Analysis, Acta Astronautica 193 75-89.
- Norman, P., Schwartzentruber, T., 2011, A Computational Chemistry Methodology for Developing an Oxygen-Silica Finite Rate Catalytic Model for Hypersonic Flow, AIAA Paper 2011-3644.
- Li, K., Liu, J., 2015, A New Surface Model for Silica-Based Thermal Protection Material for Hypersonic Vehicles, Chinese Journal of Aeronautics and Astronautics 28(5) 1355-1361. https://doi.org/10.1016/j.cja.2015.08.011
- Yang, X., Li, Q., 2023, Influence of Heterogeneous Catalysis on Aerothermodynamics at Hypersonic Speeds Based on Gas-Interface-Solid Coupling Simulation, International Journal of Heat and Mass Transfer 214 124450.
- Norman, P., Schwartzentruber, T.E., 2012, A Computational Chemistry Methodology for Developing an Oxygen-Silica Finite Rate Catalytic Model for Hypersonic Flows: Part II, AIAA Paper 2012-3097.
- Bonelli, F., Pascazio, G., 2021, Effect of Finite-Rate Catalysis on Wall Heat Flux Prediction in Hypersonic Flow, Physical Review Fluids 6 033201.
- Norman, P., Schwartzentruber, T. E., 2013, The Structure of Silica Surface Exposed to Atomic Oxygen, The Journal of Physical Chemistry C 117 9311-9321. https://doi.org/10.1021/jp4019525