DOI QR코드

DOI QR Code

Surface Catalytic Recombination in Hypersonic Flow: A Review of the Numerical Methods

극초음속 유동에서의 표면 촉매 재결합: 수치해석적 기법 리뷰

  • Ikhyun Kim (Department of Mechanical Engineering, Keimyung University) ;
  • Yosheph Yang (Department of Mechanical and Biomedical Engineering, Kangwon National University)
  • Received : 2023.12.15
  • Accepted : 2023.12.28
  • Published : 2023.12.31

Abstract

This paper provides a general overview of surface catalytic recombination in hypersonic flow. The surface catalytic recombination phenomena is elaborated in terms of its general overview and numerical modeling associated with it. The general overview of the surface catalytic recombination phenomena describes the elementary surface reactions for the surface catalytic and the role of the surface catalytic recombination efficiency in the heat transfer determination. In the numerical modeling, the surface catalytic recombination is described based on the stagnation-point boundary layer analysis, and finite-rate surface reaction modeling. Throughout this overview manuscript, a general understanding of this phenomena is obtained and can be used as foundation for deeper application with the numerical computational fluid dynamics (CFD) flow solver to estimate the surface heat transfer in the hypersonic vehicles.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT) (No.NRF-2021R1G1A1006344).

References

  1. Scott, C. D., 1985, Effect of Nonequilibrium and Wall Catalysis on Shuttle Heat Transfer, Journal of Spacecraft and Rockets. 22(5) 489-498. https://doi.org/10.2514/3.25059
  2. Yamamoto, Y., 1995, Recent Comparison of Aerothermodynamics Results by CFD and FEM Coupling Analysis with OREX Flight Experiment, 13th NAL Symposium on Aircraft Computational Aerodynamics SP-29. 27-39.
  3. Muylert, J., Walpot, L., 2007, Aerothermodynamicreentry Flight Experiments Expert, Flight Experiments for Hypersonic Vehicle Development RTO-EN-AVT-130 Paper 13. 1-34.
  4. Barbato, M., Giordano, D., 1996, Comparison of Catalytic Wall Conditions for Hypersonic Flow, Journal of Spacecraft and Rockets 33(5) 620-627. https://doi.org/10.2514/3.26811
  5. Stewart, D., 1996, Determination of Surface Catalytic Efficiency for Thermal Protection Materials - Room Temperature to Their Upper Use Limit, AIAA Paper 1996-1863.
  6. Pidan, S., Auweter-Kurtz, M., 2005, Recombination Coefficients and Spectral Emissivity of Silicon Carbide-Based Thermal Protection Materials, Journal of Thermophysics and Heat Transfer 19(4) 566-571. https://doi.org/10.2514/1.12814
  7. Herdrich, G., Fertig, M., 2005, Oxidation Behavior of Siliconcarbide-Based Materials by Using New Probe Techniques, Journal of Spacecraft and Rockets 42(5) 817-824. https://doi.org/10.2514/1.12265
  8. Cinquegrana, D., Votta, R., 2019, Continuum Breakdown and Surface Catalysis Effects in NASA Arc Jet Testing at SCIROCCO, Aerospace Science and Technology 88 258-272. https://doi.org/10.1016/j.ast.2019.03.026
  9. Park, G., 2005, Oxygen Catalytic Recombination on Copper Oxide in Tertiary Gas Mixtures, Journal of Spacecraft and Rockets 50(3) 540-555. https://doi.org/10.2514/1.A32312
  10. Kim, I., Park, G., 2019, Experimental Study of Surface Roughness Effect on Oxygen Catalytic Recombination, International Journal of Heat and Mass Transfer 138 916-922. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.049
  11. Balat-Pichelin, M., Badie, J. M.., 2003, Recombination Coefficient of Atomic Oxygen on Ceramic Materials under Earth Re-entry Conditions by Optical Emission Spectroscopy, Chemical Physics 291(2) 181-194. https://doi.org/10.1016/S0301-0104(03)00152-6
  12. Barbato, M., Bruno, C., 1996, Heterogenous Catalysis: Catalytic, Theory, Models, and Applications. Capitelli M (ed) Molecular Physics and Hypersonic Flows, NATO ASI Series, 139-160.
  13. Goulard, R., 1958, On Catalytic Recombination Rates in Hypersonic Stagnation Heat Transfer, Journal of Jet Propulsion 28(11) 737-745. https://doi.org/10.2514/8.7444
  14. Melin, G. A., Madix, R. J., 1971, Energy Accommodation During Hydrogen Atom Recombination on Metal Surfaces, Transactions of the Faraday Society 67 2711-2719. https://doi.org/10.1039/tf9716702711
  15. Halpern, B., Rosner, D. E., 1978, Chemical Energy Accommodation at Catalyst Surfaces Flow Reactor studies of the Association of Nitrogen Atoms on Metals at High Temperatures. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 74 188.
  16. Carleton, K. L., Marinelli W. J., 1992, Spacecraft Thermal Energy Accommodation from Atomic Recombination, Journal of Thermophysics and Heat Transfer 6(4) 650-655. https://doi.org/10.2514/3.11547
  17. Balat-Pichelin, M., Kovalev, V. L., 2008, Effect of the Incomplete Accommodation of the Heterogeneous Recombination Energy on Heat Fluxes to a Quartz Surface, Fluid Dynamics 43(5) 830-838. https://doi.org/10.1134/S0015462808050189
  18. Bedra, L., Balat-Pichelin, M., 2005, Comparative Modeling Study and Experimental Results of Atomic Oxygen Recombination on Silica-Based Surfaces at High Temperature, Aerospace Science and Technology 9(4) 318-328. https://doi.org/10.1016/j.ast.2005.01.011
  19. Scott, C. D., 1980, Catalytic Recombination of Nitrogen and Oxygen on High Temperature Reusable Surface Insulation, AIAA Paper 1980-1477.
  20. Kolodziej, P., Stewart, D., 1987, Nitrogen Recombination on High Temperature Reusable Surface Insulation and the Analysis of Its Effect on Surface Catalysis, AIAA Paper 1987-1637.
  21. Rakich, J. V., Stewart, D. A., 1982, Catalytic Efficiency of the Space Shuttle Heat Shield, AIAA Paper 1982-0944.
  22. Zoby, E., Simmonds, A., Gupta, R., 1984, Temperature-Dependent Reaction Rate Expression for Oxygen Recombination at Shuttle Entry Conditions, AIAA Paper 1984-224.
  23. Gupta, R. N., 1996, Reevaluation of Flight-Derived Surface Recombination Rate Expressions for Oxygen and Nitrogen, Journal of Spacecraft and Rockets 33(3) 451-453. https://doi.org/10.2514/3.26783
  24. Marschall, J., MacLean, M., 2015, Surface Chemistry in Non-Equilibrium Flows, Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances, American Institute of Aeronautics and Astronautics, Virginia.
  25. Lees, L., 1956, Laminar Heat Transfer Over Blunt-Nosed Bodies at Hypersonic Flight Speed, Journal of Jet Propulsion 26(4) 259-269. https://doi.org/10.2514/8.6977
  26. Fay, J. A., Riddell, F. R., 1958, Theory of Stagnation Point Heat Transfer in Dissociated Air, Journal of the Aerospace Sciences 25(2) 73-85. https://doi.org/10.2514/8.7517
  27. Panerai, F., Chazot, O., 2012, Characterization of Gas/Surface Interactions for Ceramic Matrix Composites in High Enthalpy, Low Pressure Air Flow, Materials Chemistry and Physics 134(2-3) 597-607. https://doi.org/10.1016/j.matchemphys.2012.03.036
  28. Massuti-Ballester, B., Pidan, S., 2015, Recent Catalysis Measurements at IRS, Advances in Space Research 56(4) 742-765. https://doi.org/10.1016/j.asr.2015.04.028
  29. Joiner, N., Esser, B., 2016, Development of an Innovative Validation Strategy of Gas-Surface Interaction Modelling for Re-entry Applications, CEAS Space Journal 8(4) 237-255. https://doi.org/10.1007/s12567-016-0124-6
  30. Yang, Y., Kim, I., 2019, Experimental and Numerical Study of Oxygen Catalytic Recombination of SiC-Coated Material, International Journal of Heat and Mass Transfer 143 118510.
  31. Kim, I., Yang, Y., 2021, Catalytic Recombination Assessment on Carbon in Dissociated Shock Tube Flow, Acta Astronautica 181 52-60. https://doi.org/10.1016/j.actaastro.2021.01.003
  32. Inger, G. R., Elder, J., 1991, Recombination-Dominated Nonequilibrium Heat Transfer to Arbitrary Catalytic Hypersonic Vehicles, Journal of Thermophysics and Heat Transfer 5(4) 449-455. https://doi.org/10.2514/3.286
  33. Armenise, I., Capitelli, M., 2000, Nonequilibrium Vibrational Kinetics of an O/O Mixture Hitting a Catalytic Surface, Journal of Spacecraft and Rockets 37(3) 318-323. https://doi.org/10.2514/2.3581
  34. Armenise, I., Capitelli, M., 2001, Nonequilibrium Vibrational Kinetics of Air Hitting a Catalytic SiO Surface, Journal of Spacecraft and Rockets 38(4) 482-487. https://doi.org/10.2514/2.3730
  35. Yang, Y., Park, G., 2019, Analysis of Catalytic Heat Transfer for a Multi-Species Gas Mixture, International Journal of Heat and Mass Transfer 137 1088-1102. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.172
  36. Yang, Y., Petha Sethuraman, V. R., Kim, H., Kim, J.G., Determination of Surface Catalysis on Copper Oxide in a Shock Tube Using Thermochemical Nonequilibrium CFD Analysis, Acta Astronautica 193 75-89.
  37. Norman, P., Schwartzentruber, T., 2011, A Computational Chemistry Methodology for Developing an Oxygen-Silica Finite Rate Catalytic Model for Hypersonic Flow, AIAA Paper 2011-3644.
  38. Li, K., Liu, J., 2015, A New Surface Model for Silica-Based Thermal Protection Material for Hypersonic Vehicles, Chinese Journal of Aeronautics and Astronautics 28(5) 1355-1361. https://doi.org/10.1016/j.cja.2015.08.011
  39. Yang, X., Li, Q., 2023, Influence of Heterogeneous Catalysis on Aerothermodynamics at Hypersonic Speeds Based on Gas-Interface-Solid Coupling Simulation, International Journal of Heat and Mass Transfer 214 124450.
  40. Norman, P., Schwartzentruber, T.E., 2012, A Computational Chemistry Methodology for Developing an Oxygen-Silica Finite Rate Catalytic Model for Hypersonic Flows: Part II, AIAA Paper 2012-3097.
  41. Bonelli, F., Pascazio, G., 2021, Effect of Finite-Rate Catalysis on Wall Heat Flux Prediction in Hypersonic Flow, Physical Review Fluids 6 033201.
  42. Norman, P., Schwartzentruber, T. E., 2013, The Structure of Silica Surface Exposed to Atomic Oxygen, The Journal of Physical Chemistry C 117 9311-9321. https://doi.org/10.1021/jp4019525