Browse > Article
http://dx.doi.org/10.12989/sem.2016.60.3.405

Numerical simulation of the femur fracture under static loading  

El Sallah, Zagane Mohammed (Laboratory Mechanics Physics of materials (LMPM), University Djillali Liabes of Sidi bel abbes)
Smail, Benbarek (Laboratory Mechanics Physics of materials (LMPM), University Djillali Liabes of Sidi bel abbes)
Abderahmane, Sahli (Laboratory Mechanics Physics of materials (LMPM), University Djillali Liabes of Sidi bel abbes)
Bouiadjra, B. Bachir (Laboratory Mechanics Physics of materials (LMPM), University Djillali Liabes of Sidi bel abbes)
Boualem, Serier (Laboratory Mechanics Physics of materials (LMPM), University Djillali Liabes of Sidi bel abbes)
Publication Information
Structural Engineering and Mechanics / v.60, no.3, 2016 , pp. 405-412 More about this Journal
Abstract
Bone is a living material with a complex hierarchical structure that gives it remarkable mechanical properties. Bone constantly undergoes mechanical. Its quality and resistance to fracture is constantly changing over time through the process of bone remodeling. Numerical modeling allows the study of the bone mechanical behavior and the prediction of different trauma caused by accidents without expose humans to real tests. The aim of this work is the modeling of the femur fracture under static solicitation to create a numerical model to simulate this element fracture. This modeling will contribute to improve the design of the indoor environment to be better safe for the passengers' transportation means. Results show that vertical loading leads to the femur neck fracture and horizontal loading leads to the fracture of the femur diaphysis. The isotropic consideration of the bone leads to bone fracture by crack propagation but the orthotropic consideration leads to the fragmentation of the bone.
Keywords
extended finite element method (X-FEM); crack/damage detection/identification; structural design; simulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Giambini, H., Qin, X., Dragomir-Daescu, D., An, K.N. and Nassr, A. (2015), "Specimen-specific vertebral fracture modeling: a feasibility study using the extended finite element method", Med. Biol. Eng. Comput., 54(4), 583-593.
2 Hambli, R., Bettamer, A. and Allaoui, S. (2013), "Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-damage", Med. Eng. Phys., 34, 202-210.
3 Li, S., Abdel-Wahab, A., Demirci, E. and Silberschmidt, V.V. (2013), "Fracture process in cortical bone: XFEM analysis of microstructured models", Int. J. Fract., 184(1-2), 43-55.   DOI
4 Li, Z. (2013), "Finite element analysis of pedestrian lower limb fractures by direct force : the result of being run over or impact", Foren. Sci. Int., 229, 43-51.   DOI
5 Liu, X.C., Qin, X. and Du, Z. (2010), "Bone fracture analysis using the extended finite element method (XFEM) with abaqus", The 34th annual meeting of the American society of biomechanics.
6 Mischinski, S. and Ural, A. (2013), "Interaction of microstructure and microcrack growth in cortical bone: a finite element study", Comput. Meth. Biomech. Biomed. Eng., 16(1), 81-94.   DOI
7 Park, J.H., Lee, Y., Shon, O.J., Shon, H.C. and Kim, J.W. (2016), "Surgical tips of in-tramedullary nailing in severely bowed femurs in atyp-ical femur fractures: Simulation with 3D printed model. Injury", Int. J. Care Injur., 47, 1318-1324.   DOI
8 Schwarzkopf, R., Oni, J.K. and Marwin, S.E. (2013), "Total hip arthroplas-ty periprosthetic femoral fractures", Bull. Hospit. Joint Dis., 71(1), 68-78.
9 Yoon, Y. and Cowin, S. (2008), "An estimate of anisotropic poroelastic constants of an osteon", Biomech. Model. Mechanobiol., 7(1), 13-26.   DOI
10 Abdel-Wahab, A.A., Maligno, A.R. and Silberschmidt, V.V. (2012), "Micro-scale modelling of bovine cortical bone fracture: Analysis of crack propagation and microstructure using X-FEM", Computational Materials Science, 52, 128-135.   DOI
11 Ali, A.A., Cristofolini, L., Schileo, E., Hu, H., Taddei, F., Kim, R.H. ... and Laz, P.J. (2014), "Specimenspecific modeling of hip fracture pattern and repair", J. Biomech., 47, 536-543.   DOI
12 Ali, B., Abdelkader, B., Noureddine, B. and Boualem, S. (2015), "Numerical analysis of crack propagation in cement PMMA: application of SED approach", Struct. Eng. Mech., 55(1), 93-109.   DOI
13 Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45(5), 601-620.   DOI
14 Benbarek, S., Bouiadjra, B., Achour, T., Belhouari, M. and Serier, B. (2007), "Finite element analysis of the behaviour of crackemanating from microvoid in cement of reconstructed acetabulum", Mater. Sci. Eng. A, 457(1-2), 385-391.   DOI
15 Brauer, C., Coca-Perraillon, M., Cutler, D.M. and Rosen, A.B. (2009), "Incidence and mortality of hip fractures in the United States", J. Am. Med. Assoc., 302, 1573-1579.   DOI
16 Cummings, S.R. and Melton, L.J. (2002), "Epidemiology and outcomes of osteoporotic fractures", Lancet, 359, 1761-1767.   DOI
17 Dassault Systemes (2013), Abaqus v6.13 Documentation-ABAQUS analysis user's manual, ABAQUS Inc., 6.13.