• 제목/요약/키워드: Mechanical interaction

검색결과 1,841건 처리시간 0.027초

중고도에서 운용되는 측 추력 제어 요격체에 대한 제트 간섭 유동 분석 (Jet Interaction Flow Analysis of Lateral Jet Controlled Interceptor Operating at Medium Altitude)

  • 최경준;이성욱;오광석;김종암
    • 한국항공우주학회지
    • /
    • 제46권12호
    • /
    • pp.986-993
    • /
    • 2018
  • 측 추력 제트는 유도무기의 자세제어 및 궤도 천이 기동을 하는 데 있어 기존의 핀과 같이 제어 면을 이용한 방식보다 우수한 기동성을 갖는다. 하지만 초음속 영역에서 비행 시 측 추력 제트로 인한 제트 간섭 유동이 발생하며 충격파와 경계층 유동, 와류 유동의 상호 작용으로 인해 매우 복잡한 유동 구조를 나타낸다. 특히 직격 파괴(hit-to-kill) 방식의 요격체의 경우 정밀한 제어 및 기동이 요구되기 때문에 제트 간섭 유동이 미치는 영향에 대한 분석이 필요하다. 기존의 제트 간섭 해석은 저고도 운용 조건에서 주로 수행되었으나 중고도 운용 조건의 경우 해석 사례가 많지 않으며 대기 조건으로 인해 분사 제트 유동이 상대적으로 크게 발달하는 특징을 갖는다. 본 연구에서는 중고도에서 비행하는 요격체 형상에 대해 받음각 조건에 따라 제트 간섭 유동 해석을 수행하였다. 해석 결과를 바탕으로 유동장의 구조적인 변화 특성을 분석하였으며, 공력 계수의 변화를 비교하였다.

MODAL CHARACTERISTIC ANALYSIS OF THE APR1400 NUCLEAR REACTOR INTERNALS FOR SEISMIC ANALYSIS

  • Park, Jong-Beom;Choi, Youngin;Lee, Sang-Jeong;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil;Park, Chan-Il
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.689-698
    • /
    • 2014
  • Reactor internals are sensitive to dynamic loads such as earthquakes and flow induced vibration. Thus, it is essential to identify the dynamic characteristics to evaluate the seismic integrity of the structures. However, a full-sized system is too large to perform modal experiments, making it difficult to extract data on its modal characteristics. In this research, we constructed a finite element model of the APR1400 reactor internals to identify their modal characteristics. The commercial reactor was selected to reflect the actual boundary conditions. Our FE model was constructed based on scale-similarity analysis and fluid-structure interaction investigations using a fabricated scaled-down model.

Fluid-Structure Interaction Modeling and Simulation of CMP Process for Semiconductor Manufacturing

  • Sung, In-Ha;Yang, Woo-Yul;Kwark, Ha-Slomi;Yeo, Chang-Dong
    • 정보저장시스템학회논문집
    • /
    • 제7권2호
    • /
    • pp.60-64
    • /
    • 2011
  • Chemical mechanical planarization is one of the core processes in fabrication of semiconductors, which are increasingly used for information storage devices like solid state drives. For higher data capacity in storage devices, CMP process is required to show ultimate precision and accuracy. In this work, 2-dimensional finite element models were developed to investigate the effects of the slurry particle impact on microscratch generation and the phenomena generated at pad-particle-wafer contact interface. The results revealed that no plastic deformation and corresponding material removal could be generated by simple impact of slurry particles under real CMP conditions. From the results of finite element simulations, it could be concluded that the pad-particle mixture formed in CMP process would be one of major factors leading to microscratch generation.

Effects of Injection Molding Parameters and their Interactions on Mechanical Properties of PMMA/PC Blend

  • Hoang, Van Thanh;Luu, Duc Binh;Toan Do, Le Hung;Tran, Ngoc Hai;Nguyen, Pham The Nhan;Tran, Minh Sang;Tran, Minh Thong
    • 한국재료학회지
    • /
    • 제30권12호
    • /
    • pp.650-654
    • /
    • 2020
  • A combination of Polycarbonate (PC) material and Polymethylmethacrylate (PMMA), fabricated using an injection molding machine, has been investigated to determine its advantages, as studied in Ref. 1). This paper aims to investigate the optimization of PMMA/PC blend for both tensile yield strength and impact strength. Furthermore, interaction effects of process conditions on mechanical properties including tensile yield strength and impact strength of PMMA/PC blend by injection molding process are interpreted in this study. Tensile and impact specimens are designed following ASTM, type V, and are fabricated by injection molding process. The processing conditions such as melt temperature, mold temperature, packing pressure, and cooling time are applied; each factor has three levels. As a result, in comparison with optimization of separated responses, mechanical properties of PMMA/PC are found to decrease when optimizing both tensile and impact strengths simultaneously. The melt temperature is found to be the most significant interaction parameter with the mold temperature and packing pressure. In addition, there is more interaction between the mold temperature and cooling time. This investigation provides a useful understanding of the control of injection molding processing of polymer blends in optical application.

Effect of soil-structure interaction on the reliability of hyperbolic cooling towers

  • Liao, Wen;Lu, Wenda;Liu, Renhuai
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.217-224
    • /
    • 1999
  • A semi-stochastic process model of reliability was established for hyperbolic cooling towers subjected to combined loadings of wind force, self-weight, temperature loading. Effect of the soil-structure interaction on reliability was evaluated. By involving the gust factor, an equivalent static scheme was employed to convert the dynamic model to static model. The TR combination rule was used to consider relations between load responses. An analysis example was made on the 90M cooling tower of Maoming, Guangdong of China. Numerical results show that the design not including interaction turns to be conservative.

ABC optimization of TMD parameters for tall buildings with soil structure interaction

  • Farshidianfar, Anooshiravan;Soheili, Saeed
    • Interaction and multiscale mechanics
    • /
    • 제6권4호
    • /
    • pp.339-356
    • /
    • 2013
  • This paper investigates the optimized parameters of Tuned Mass Dampers (TMDs) for vibration control of high-rise structures including Soil Structure Interaction (SSI). The Artificial Bee Colony (ABC) method is employed for optimization. The TMD Mass, damping coefficient and spring stiffness are assumed as the design variables of the controller; and the objective is set as the reduction of both the maximum displacement and acceleration of the building. The time domain analysis based on Newmark method is employed to obtain the displacement, velocity and acceleration of different stories and TMD in response to 6 types of far field earthquakes. The optimized mass, frequency and damping ratio are then formulated for different soil types; and employed for the design of TMD for the 40 and 15 story buildings and 10 different earthquakes, and well results are achieved. This study leads the researchers to the better understanding and designing of TMDs as passive controllers for the mitigation of earthquake oscillations.

유체-구조물 상호작용을 위한 유한요소 결합공식화의 예조건화에 대한 연구 (Preconditioning Method of a Finite Element Combined Formulation for Fluid-Structure Interaction)

  • 최형권
    • 대한기계학회논문집B
    • /
    • 제33권4호
    • /
    • pp.242-247
    • /
    • 2009
  • AILU type preconditioners for a two-dimensional combined P2P1 finite element formulation of the interaction of rigid cylinder with incompressible fluid flow have been devised and tested by solving fluid-structure interaction (FSI) problems. The FSI code simulating the interaction of a rigid cylinder with an unsteady flow is based on P2P1 mixed finite element formulation coupled with combined formulation. Four different preconditioners were devised for the two-dimensional combined P2P1 finite element formulation extending the idea of Nam et al., which was proposed for the preconditioning of a P2P1 mixed finite element formulation of the incompressible Navier-Stokes equations. It was found that PC-III or PC-IV among them perform well with respect to computational memory and convergence rate for some bench-mark problems.

Noise Reduction of Blade Vortex Interaction Using Tip Jet Blowing

  • Yang Choongmo;Baek Jehyun;Saito Shigeru;Aoyama Takashi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.172-174
    • /
    • 2003
  • Nnumerical investigations of the tip vortical characteristics were conducted with lateral tip blowing to reduce Blade-Vortex Interaction (BVI) noise. The predictions of BVI noise were performed using a combined method of an unsteady Euler code with an aeroacoustic code based on Ffowcs- Williams and Hawkings formulation. A moving overlapped grid system with three types of grids (blade grid, inner and outer background grid) was used to simulate BVI of helicopter with two OLS-airfoil blades in forward/ descending flight condition. The calculated waveform of BVI noise, which is characterized by the distinct peaks caused during blade vortex interaction, clearly shows the effect of lateral blowing at tip to reduce BVI noise

  • PDF

축기울기에 따른 DPS 스러스터와 선체의 상호간섭 수치해석 (NUMERICAL STUDY ON DPS THRUSTER-HULL INTERACTION WITH DIFFERENT AXIS TILTING ANGLE)

  • 진두화;이상욱
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.72-77
    • /
    • 2016
  • In this study, effects of thurster axis tilting angle on the thruster-hull interaction and propulsion performance in a dynamic positioning system of offshore plant are numerically investigated. Straight and 7-degree tilted downward thruster models as a form of ducted propeller are considered. For numerical simulations, Reynolds averaged Navier-Stokes equations with SST turbulence model are solved by using STAR-CCM+. Results show that thruster-hull interaction is reduced in 7-degree tilted thruster model with lower vortex strength between thruster and hull bottom, although the propulsion performance does not have noticeable difference in a bollard condition.

두 곡면벽제트로부터 형성된 합성제트에서의 레이놀즈응력 전달 (Reynolds Stress Transport in a Merged Jet Arising from Two Opposing urved Wall Jets)

  • 류호선;박승오
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.416-425
    • /
    • 1993
  • To investigate the characteristics of the merged jet arising from the interaction of two opposing curved wall jets over a circular cylinder in still air, mean velocity, Reynolds stresses, triple moments and integral length scale were measured using hot-wire anenometry. The turbulent kinetic energy and shear stress budget were evaluated using the measured data. The variations of the Reynolds stresses, the triple moment and integral length scale are severe in the interaction region. The pressure diffusion terms are found to be very large when compared the other terms in the interaction region. The distributions of the Reynolds stress and the triple moment in the similar region are found to be similar to those of conventional plane jets.