Browse > Article
http://dx.doi.org/10.12989/imm.2013.6.4.339

ABC optimization of TMD parameters for tall buildings with soil structure interaction  

Farshidianfar, Anooshiravan (Department of Mechanical Engineering, Ferdowsi University of Mashhad)
Soheili, Saeed (Department of Mechanical Engineering, Ferdowsi University of Mashhad)
Publication Information
Interaction and multiscale mechanics / v.6, no.4, 2013 , pp. 339-356 More about this Journal
Abstract
This paper investigates the optimized parameters of Tuned Mass Dampers (TMDs) for vibration control of high-rise structures including Soil Structure Interaction (SSI). The Artificial Bee Colony (ABC) method is employed for optimization. The TMD Mass, damping coefficient and spring stiffness are assumed as the design variables of the controller; and the objective is set as the reduction of both the maximum displacement and acceleration of the building. The time domain analysis based on Newmark method is employed to obtain the displacement, velocity and acceleration of different stories and TMD in response to 6 types of far field earthquakes. The optimized mass, frequency and damping ratio are then formulated for different soil types; and employed for the design of TMD for the 40 and 15 story buildings and 10 different earthquakes, and well results are achieved. This study leads the researchers to the better understanding and designing of TMDs as passive controllers for the mitigation of earthquake oscillations.
Keywords
Tuned Mass Damper (TMD); Soil-Structure Interaction (SSI); Artificial Bee Colony (ABC); Curve Fitting;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, T.B. and McKee, M.L. (2008), "Endohedral hydrogen exchange reactions in C60 (nH2@C60, n=1-5): comparison of recent methods in a high-pressure cooker", J. Am. Chem. Soc., 130, 17610-17619.   DOI   ScienceOn
2 Ding, F., Lin, Y., Krasnov, P.O. and Yakobson, B.I. (2007), "Nanotube-derived carbon foam for hydrogen sorption", J. Chem. Phys., 127, 164703.
3 Dresselhaus, M.S., Dresselhaus, G. and Eklund, P.C. (1996), Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, CA, USA.
4 Drexler, K.E. (1992), Nanosystems - Molecular Machinery, Manufacturing and Computation, John Wiley & Sons, New York, USA.
5 Er, S., Wijs de, G.A. and Brocks, G. (2009), "Hydrogen storage by polylithiated molecules and nanostructures", J. Phys. Chem. C, 113(20), 8997-9002.   DOI   ScienceOn
6 Holbrook, K.A., Pilling, M.J. and Robertson, S.H. (1996), Unimolecular Reactions, John Wiley & Sons, New York, USA.
7 Kruse, H. and Grimme, S. (2009), "Accurate Quantum Chemical Description of Non-Covalent Interactions in Hydrogen Filled Endohedral Fullerene Complexes", J. Phys. Chem.C, 113, 17006-17010.   DOI   ScienceOn
8 Labet, V., Gonzalez-Morelos, P., Hoffmann, R. and Ashcroft, N.W. (2012), "A fresh look at dense hydrogen under pressure. I. An introduction to the problem, and an index probing equalization of H-H distances", J. Chem. Phys., 136, 074501.   DOI   ScienceOn
9 Lachawiec, A.J., Qi, G. and Yang, R.T. (2005), "Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement", Langmuir, 21, 11418-11424.   DOI   ScienceOn
10 Li, R. and Sun, L.Z. (2011), "Dynamic mechanical analysis of silicone rubber reinforced with multi-walled carbon nanotubes", Interact. Multiscale Mech., 4, 239-245.   DOI   ScienceOn
11 Lin, Y., Ding, F. and Yakobson, B.I. (2008), "Hydrogen storage by spillover on graphene as a phase nucleation process", Phys. Rev. B, 78, 041402.
12 Liu, W., Zhao, Y.H., Li, Y., Jiang, Q. and Lavernia, E.J. (2009), "Enhanced hydrogen storage on Li-dispersed carbon nanotubes", J. Phys. Chem. C, 113, 2028-2033.   DOI   ScienceOn
13 Mattesini, M., Soler, J.M. and Yndurain, F. (2006), "Ab initio study of metal-organic framework-5 Zn4O(1,4-benzenedicarboxylate)3: an assessment of mechanical and spectroscopic properties", Phys. Rev. B, 73, 094111.   DOI   ScienceOn
14 Averill, F.W., Morris, J.R. and Cooper, V.R. (2009), "Calculated properties of fully hydrogenated single layers of BN, BC2N, and graphene: graphene and its BN-containing analogues", Phys. Rev. B, 80, 195411.   DOI   ScienceOn
15 Dodziuki, H. (2005), "Modeling complexes of H2 molecules in fullerenes", Chem. Phys. Lett., 410, 39-41.   DOI   ScienceOn
16 Shen, L. (2013), "Molecular dynamics study of Al solute-dislocation interactions in Mg alloys", Interact. Multiscale Mech., 6, 127-136.   DOI   ScienceOn
17 Miller, G.P., Kintigh, J., Kim, E., Weck, P.F., Berber, S. and Tomanek, D. (2008), "Hydrogenation of single-wall carbon nanotubes using polyamine reagents: combined experimental and theoretical study", J. Am. Chem. Soc., 130, 2296-2303.   DOI   ScienceOn
18 Pupysheva, O.V., Farajian, A.A. and Yakobson, B.I. (2008), "Fullerene nanocage capacity for hydrogen storage", Nano Lett., 8, 767-774.   DOI   ScienceOn
19 Salam, M.A., Sufian, S. and Lwin, Y. (2013), "Hydrogen adsorption study on mixed oxides using the density functional theory", J. Phys. Chem. Solids, 74, 558-564.   DOI   ScienceOn
20 Singh, A.K., Ribas, M.A. and Yakobson, B.I. (2009), "H-spillover through the catalyst saturation: an ab initio thermodynamics study", ACS Nano, 3, 1657-1662.   DOI   ScienceOn
21 Sofo, J.O., Chaudhari, A.S. and Barber, G.D. (2007), "Graphane: a two-dimensional hydrocarbon", Phys. Rev. B, 75, 153401.   DOI   ScienceOn
22 Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P. and Sanchez-Portal, D. (2002), "The SIESTA method for ab initio order-N materials simulation", J. Phys. Cond. Mat., 14, 2745-2779.   DOI   ScienceOn
23 Stadie, N.P., Purewal, J.J., Ahn, C.C. and Fultz, B. (2010), "Measurements of hydrogen spillover in platinum doped superactived carbon", Langmuir, 26, 15481-15485.   DOI   ScienceOn
24 Strobel, R., Garche, J., Moseley, P.T., Jorissen, L. and Wolf, G. (2006), "Hydrogen storage by carbon materials", J. Power Sources, 159(2), 781-801.   DOI   ScienceOn
25 Wen, X.D., Yang, T. and Hoffmann, R., Ashcroft, N.W., Martin, R.L., Rudin, S.P. and Zhu, J.X. (2012), "Graphane nanotubes", ACS Nanos, 6, 7142-7150.   DOI   ScienceOn
26 Tsetseris, L. and Pantelides, S.T. (2012), "Hydrogen uptake by graphene and nucleation of graphane", J. Mater. Sci., 47(21), 7571-7579.   DOI
27 Wang, Q., Sun, Q., Jena, P. and Kawazoe, Y. (2009), "Theoretical study of hydrogen storage in Ca-coated fullerenes", J. Chem. Theory Comput., 5, 374-379.   DOI
28 Wang, X. and Lee, J.D. (2011), "Heat resistance of carbon nanoonions by molecular dynamics simulation", Interact. Multiscale Mech., 4, 247-255.   DOI   ScienceOn
29 Li, Y. and Yang, R.T. (2006), "Significantly enhanced hydrogen storage in metal-organic frameworks via spillover", J. Am. Chem. Soc. JACS Commun., 128, 726-725.   DOI   ScienceOn
30 Kim, B.R., Pyo, S.H., Lemaire, G. and Lee, H.K. (2011), "Multiscale approach to predict the effective elastic behavior of nanoparticle-reinforced polymer composites", Interact. Multiscale Mech., 4, 173-185.   DOI   ScienceOn
31 Bockman, T.M., Hubig, S.M. and Kochi, J.K. (1996), "Direct observation of carbon-carbon bond cleavage in ultrafast decarboxylations", J. Am. Chem. Soc., 119, 4502-4503.
32 Tukerman, M.E. (2010), Statistical Mechanics: Theory and Molecular Simulation, Oxford University Press, Oxford, UK.
33 Wu, G., Wang, J., Zeng, X.C., Hu, H. and Ding, F. (2010), "Controlling cross section of carbon nanotubes via selective hydrogenation", J. Phys. Chem. C., 114, 11753-11757.