DOI QR코드

DOI QR Code

Jet Interaction Flow Analysis of Lateral Jet Controlled Interceptor Operating at Medium Altitude

중고도에서 운용되는 측 추력 제어 요격체에 대한 제트 간섭 유동 분석

  • Choi, Kyungjun (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lee, Seonguk (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Oh, Kwangseok (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Chongam (Institute of Advanced Aerospace Technology, Seoul National University)
  • Received : 2018.09.05
  • Accepted : 2018.11.21
  • Published : 2018.12.01

Abstract

Lateral thrust jet has better maneuverability performance than the control surface like the conventional fin for attitude control or orbital transition of guided weapons. However, in the supersonic region, a jet interaction flow occurs due to the lateral thrust jet during flight, and a complicated flow structure is exhibited by the interaction of the shock wave, boundary layer flow, and the vortex flow. Especially, hit-to-kill interceptors require precise control and maneuvering, so it is necessary to analyze the effect of jet interaction flow. Conventional jet interaction analyses were performed under low altitude conditions, but there are not many cases in the case of medium altitude condition, which has different flow characteristics. In this study, jet interaction flow analysis is performed on the lateral jet controlled interceptor operating at medium altitude. Based on the results, the structural characteristics of the flow field and the changes of aerodynamic coefficient are analyzed.

측 추력 제트는 유도무기의 자세제어 및 궤도 천이 기동을 하는 데 있어 기존의 핀과 같이 제어 면을 이용한 방식보다 우수한 기동성을 갖는다. 하지만 초음속 영역에서 비행 시 측 추력 제트로 인한 제트 간섭 유동이 발생하며 충격파와 경계층 유동, 와류 유동의 상호 작용으로 인해 매우 복잡한 유동 구조를 나타낸다. 특히 직격 파괴(hit-to-kill) 방식의 요격체의 경우 정밀한 제어 및 기동이 요구되기 때문에 제트 간섭 유동이 미치는 영향에 대한 분석이 필요하다. 기존의 제트 간섭 해석은 저고도 운용 조건에서 주로 수행되었으나 중고도 운용 조건의 경우 해석 사례가 많지 않으며 대기 조건으로 인해 분사 제트 유동이 상대적으로 크게 발달하는 특징을 갖는다. 본 연구에서는 중고도에서 비행하는 요격체 형상에 대해 받음각 조건에 따라 제트 간섭 유동 해석을 수행하였다. 해석 결과를 바탕으로 유동장의 구조적인 변화 특성을 분석하였으며, 공력 계수의 변화를 비교하였다.

Keywords

References

  1. Chamberlain, R., McClure, D., and Dang, A., "CFD Analysis of Lateral Jet Interaction Phenomena for the THAAD Interceptor," 38th AIAA Aerospace Sciences Meeting & Exhibit, 2000, pp.1-8.
  2. Brandeis, J., and Gill, J., "Experimental investigation of side-jet steering for supersonic and hypersonic missiles," Journal of Spacecraft and Rockets, Vol. 33, No. 3, 1996, pp.346-352. https://doi.org/10.2514/3.26766
  3. Menter, F. R., Kuntz, M., and Langtry, R., "Ten Years of Industrial Experience with the SST Turbulence Model," Turbulence, Heat and Mass Transfer 4, Begell House, inc., 2003, pp.625-632.
  4. Hold, R. K., Engert, M., Weinand, K., and Stern, D., "Numerical Investigation of Hot and Cold Side Jet Interaction with a Supersonic Cross-Flow," New Results in Numer. & Exp. Fluid Mech. VIII, edited by A. Dillmann et al., Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer-Verlag, Berlin, GE, 2013, pp.575-582.
  5. Kim, K. H., Kim, C., and Rho, O.-H., "Methods for the Accurate Computations of Hypersonic Flows I. AUSMPW+ Scheme," Journal of Computational Physics, Vol. 174, No. 1, 2001, pp.38-80. https://doi.org/10.1006/jcph.2001.6873
  6. Park, J. S., and Kim, C., "Multidimensional Limiting Process for Finite Volume Methods on Unstructured Grids," Computers & Fluids, Vol. 65, No. 30, 2012, pp.8-24. https://doi.org/10.1016/j.compfluid.2012.04.015
  7. Yoon, S., and Jameson, A., "Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier-Stokes Equations," AIAA Journal, Vol. 26, No. 9, 1988.
  8. Seong, S., Kim, S., Kim, S., Ryu, D., and Kang, H. G., "A new ray tracing model for aero-optical effect simulation of laminar flow field surrounding highly supersonic projectile with cone shape head," Proc. SPIE Vol. 9249, Electro-Optical and Infrared Systems: Technology and Applications XI, 2014.
  9. Witte, D. W., and Tatum, K. E., "Computer Code for Determinaton of Thermally Perfect Gas Properties," NASA Technical Paper 3447, 1994.
  10. Lofthouse, A. J., Scalabrin, L. C., and Boyd, I. D., "Velocity Slip and Temperature Jump in Hypersonic Aerothermodynamics," Journal of Thermophysics and Heat Transfer, Vol. 22, No. 1, 2008, pp.38-49. https://doi.org/10.2514/1.31280
  11. Viti, V., Neel, R., and Schetz, J. A., "Detailed Flow Physics of the Supersonic Jet Interaction Flow Field," Physics of Fluids, Vol. 21, No. 4, 2009.
  12. Zhang J., Cui, Y. D., Cui, J., and Sou, H., "Numerical Investigation of Lateral Jets over a Body of Revolution in Supersonic Cross-flow," Journal of Propulsion and Power, Vol. 28, No. 1, 2012, pp.33-46. https://doi.org/10.2514/1.B34171
  13. Min B., Lee J., and Byun, Y., "Numerical Investigation of the Shock Interaction Effect on the Lateral Jet Controlled Missile," Aerospace Science and Technology, Vol. 10, 2006, pp.385-393. https://doi.org/10.1016/j.ast.2005.11.013