• Title/Summary/Keyword: Mechanical fault

Search Result 515, Processing Time 0.034 seconds

An Optimal Design of a Driving Mechanism for Air Circuit Breaker using Taguchi Design of Experiments (다구찌실험계획법을 활용한 기중차단기의 메커니즘 최적화)

  • Park, Woo-Jin;Park, Yong-ik;Ahn, Kil-Young;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.78-84
    • /
    • 2022
  • An air circuit breaker (ACB) is an electrical protection device that interrupts abnormal fault currents that result from overloads or short circuits in a low-voltage power distribution line. The ACB consists of a main circuit part for current flow, mechanism part for the opening and closing operation of movable conductors, and arc-extinguishing part for arc extinction during the breaking operation. The driving mechanism of the ACB is a spring energy charging type. The faster the contact opening speed of the movable conductors during the opening process, the better the breaking performance. However, there is a disadvantage that the durability of mechanism decreases in inverse proportion to the use of a spring capable of accumulating high energy to configure the breaking speed faster. Therefore, to simultaneously satisfy the breaking performance and mechanical endurance of the ACB, its driving mechanism must be optimized. In this study, a dynamic model of the ACB was developed using the MDO(Mechanism Dynamics Option) module of CREO, which is widely used in multibody dynamics analysis. To improve the opening velocity, the Taguchi design method was applied to optimize the design parameters of an ACB with many linkages. In addition, to evaluate the improvement in the operating characteristics, the simulation and experimental results were compared with the MDO model and improved prototype sample, respectively.

The Reliability Evaluation of TBN Valve Testing Extension in NPP (원자력발전소 터빈밸브 시험주기 연장시 신뢰도평가)

  • Lim, Hyuk-Soon;Lee, Eun-Chan;Lee, Keun-Sung;Hwang, Seok-Won;Seong, Ki-Yeoul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3221-3223
    • /
    • 2007
  • Recently, nuclear power plant companies have been extending the turbine valve test interval to reduce the potential of the reactor trip accompanied with a turbine valve test and to improve the NPP's economy through the reduction of unexpected plant trip or decreased operation. In these regards, the extension of the test interval for turbine valves was reviewed in detail. The effect on the destructive overspeed probability due to the test interval change of turbine valves is evaluated by Fault Tree Analysis(FTA) method. Even though the test interval of turbine valves is changed from 1 month to 3 months, the analysis result shows that the reliability of turbine over speed protection system meets acceptance criteria of 1.0E-4/yr. This result will be used as the technical basis on the extension of the test interval for turbine valves. In this paper, the propriety of the turbine valve test interval extension is explained through the review on the turbine valve test interval status of turbine overspeed protection system, the analysis on the annual turbine missile frequency and the probability evaluation of the destructive overspeed due to the test interval extension.

  • PDF

A Study on the Vibration Reduction of the SPR(sudden pressure relay) in the Single Phase Main Power Transformers(345kV) (단상(345kV) 주변압기 압력 계전기의 진동절연에 관한 연구)

  • Park, Chul-Jun;Lee, Seong-Wook;Choi, Won-Ho;Lee, Wook-Ryun;Kweon, Ki-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.486-491
    • /
    • 2010
  • In this paper, it is identified that high-level vibration of the single phase main power transformers shut down due to the mechanical fault. vibration sources of the SPR in the transformer's are identified and the SPR vibrations are reduced by structural modification. For vibration characteristic identification, vibration signals were measured with an accelerometer when the transformer is driving. These signals are presented in a FFT analysis in order to find the dependency of frequency components on the transformer. From finite element analyses and some experiments, it is also found that resonances occur because the natural frequencies of the SPR exist in usual driving range. To shift the natural frequencies outside the driving range, the SPR is modified by increasing stiffness. It is verified that considerable amounts of vibration are reduced by the structural modification.

Fault Analysis of the Wind Turbine Drive Train in the Quefrency Region (큐프렌시 영역 해석을 통한 드라이브 트레인 결함 분석)

  • Park, Yong-Hui;Shi, Wei;Park, Hyun-Chul
    • New & Renewable Energy
    • /
    • v.9 no.3
    • /
    • pp.5-13
    • /
    • 2013
  • In the previous research, dynamic results have been analyzed in the time and frequency regions. Time and frequency region can be transformed by the Fourier transform. This transform is very useful about analyzing system behaviors. However, because of coupling, it cannot give clear results in the real system including lots of defects. In this paper, we introduced the analysis based on quefrency region to represent physical means clearly from complicated results. We simulated the drive train system which has defects, and compared between frequency and quefrency region to show its excellence. To do this process, We established mathematical model. The equation of motion was derived by the Lagrange equation and constraint equations. The constraint equation included relationships about gear mesh, flexibility of shaft. About numerical analysis, the Newmark beta method was used to get results. And FFT (Fast Fourier Transform) which converts results from time domain to frequency, qufrequency was used.

Analysis of SLF Interruption Performance in self-blast Gas Circuit Breaker (복합소호형 가스 차단기의 SLF 차단 성능 해석)

  • Park, Jin-gun;Ahn, Hee-sup;Choi, Jongung;Kim, Younggeun;Cho, Heayong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.24-32
    • /
    • 2020
  • A self-blast type gas circuit breaker has been studied in this study to improve efficiency of interrupting performance of short line fault(SLF). Hot gas flows of gas circuit breaker have been simulated to evaluate interruption performance using CFD. Design parameters such as various types of expansion chamber and nozzles are suggested by using simulation results. Simulated results and experimental ones are compared with previous (ones that of in under development and with capacitor) GCB. Modified new shape of an expansion chamber and nozzle has been suggested to improve the efficiency of gas flow and to provide guidelines for designing self-blast breaker with a higher interruption capability.

An Estimation of Modeling Uncertainty for a Mechanical System in Actuators and Links in a Rigid Manipulator Using Control Theory (시스템 모델링의 불확실성 추정과 보상)

  • Park, Rai-Wung;Cho, Sul
    • 대한공업교육학회지
    • /
    • v.34 no.2
    • /
    • pp.396-410
    • /
    • 2009
  • The goal of this work is to present an advanced method of an estimation of the Modeling Uncertainties coming up in industrial rigid robot's manipulator and actuators. First, with the given physical robot model, the motion equation was derived. Considering a fictitious model, a new extended motion equation is developed. Based on this extended model, an observer and observer bank are designed for the estimation of modeling uncertainties which are involving the effects of gravity, friction, mass unbalance, and Coriolis which show the nonlinear characteristics in operation states.

A fault prevention diagnostic of power transformer using Frequency Response Analysis (주파수 응답 분석(FRA)을 이용한 전력용 변압기 고장예방 진단)

  • Cho, Yun-Haeng;Lim, Tae-Young;Kim, Jong-Seon;Kim, Gi-Il;Ahn, Kwang-Won;Lim, Seong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.463-464
    • /
    • 2011
  • Currently, different kinds of diagnosis and inspection technologies are applied to prevent the internal mechanical transformation of transformers. For example, examination of internal Partial Discharge of transformer, analysis of transformer oil gas, and measurement Frequency Response Analyzer(FRA) are used to diagnose defect. Especially, diagnosis technique through Frequency Response Analyzer(FRA) has been used and developed from 1960, when it was first introduced, till now to become an important tool to examine presence of defect and to prove quality of machines for the most electric machine producers electric power company in the world. However, diagnosis through FRA is still in introduction level in Korea and the application method for FRA is not established yet. For that reason, study about the application of domestic electric installation according to the FRA is needed. It is expected that the study play an important part in the prevention of defect due to the internal transformation of transformer by introducing measurement theory, providing measurement method, and analyzing application cases.

  • PDF

Study on the Dynamic Modeling of MCCB (배선용 차단기 개폐기구의 동특성 향상방안 및 해석)

  • Park, Jin-Young;Cho, Hea-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.315-320
    • /
    • 2012
  • Generally circuit devices of low voltage are as follows, ICCB, PCB and MCCB. Among them, MCCB is typically used because it has superior characteristics which fuses do not possess, such as safety, controllability and ability to collaborate with other devices. The MCCB plays vital role, it has to trip instantaneously when the fault is occurred as well as it must have high insulation capacity. Therefore in order to enhance the breaking capacity, the study of contact construction, contact tip and link are necessary. This paper shows dynamic modeling of mechanism part of MCCB using an exclusive analysis program, and embodies the research of improvement of mechanism performance.

Comparison of FEA with Condition Monitoring for Real-Time Damage Detection of Bearing Using Infrared Thermography Techniques (적외선열화상을 이용한 베어링 실시간 손상검출 상태감시의 전산수치해석 비교)

  • Kim, Hojong;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.185-192
    • /
    • 2015
  • Since real-time monitoring systems, such as early fault detection, have been very important, an infrared thermography technique was proposed as a new diagnosis method. This study focused on damage detection and temperature characteristic analysis of ball bearings using the non-destructive, infrared thermography method. In this paper, for the reliability assessment, infrared experimental data were compared with finite element analysis (FEA) results from ANSYS. In this investigation, the temperature characteristics of ball bearing were analyzed under various loading conditions. Finally, it was confirmed that the infrared thermography technique was useful for the real-time detection of damage to bearings.

A Time-Redundant Recovery Policy of TMR Failures Using Rollback and Roll-forward (Rollback과 Roll-forward 기법을 사용한 TMR 고장의 시간여분 복구 정책)

  • Yun, Jae-Yeong;Kim, Hak-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.1
    • /
    • pp.216-224
    • /
    • 1999
  • In the paper we propose two recovery methods by adopting a rollback and/or roll-forward technique (S) to recover TMR failures in a TMR (structured ) system that is the simplest spatial redundancy. This technique is apparently effective to recovering TMR failures primarily caused by transient faults. The proposed policies carry out few reconfigurations at the cost of (minimal) time-overhead needed for those time-redundant schemes. The optimal checkpoint-interval vectors are derived for both methods through the likelihoods of all (possible) states of the system as well as the total execution-time. Consequently the effectiveness of our proposed policies is validated through certain numerical examples and simulations.

  • PDF