• 제목/요약/키워드: Mechanical engineers

검색결과 28,715건 처리시간 0.051초

기계공학 교과과정에서 3D 프린팅 교육의 설계와 운영 (Design and Operation of 3D Printing Education Curriculum in Mechanical Engineering)

  • 이인환;신정민;조해용
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.21-26
    • /
    • 2015
  • Many 3D printing technologies are being used in various industries, and their demands for well-educated engineers are increasing. Moreover, novel technologies are being developed to overcome the limits of existing 3D printing technologies. In this regard, adequate education and a related curriculum especially in the Mechanical Engineering field, which is the basis of the industry, is essential. In this paper, the development of the 3D printing curriculum and its assessment in Mechanical Engineering education are proposed. The education program consisted of lectures and practice. It consisted of major 3D printing technologies, such as SLA, FDM, SLS, LOM, and Polyjet. Moreover, post-processing, room temperature vulcanizing (RTV), and coloring were also taught. The effectiveness of the proposed education program was assessed by the questionnaire survey, and the results were analyzed. Areas of improvement were deduced from the survey results.

다공성 알루미나 필터 표면에 형성된 나노구조물의 형상에 따른 찢어짐에 의한 세포파쇄 특성 평가 (Evaluation of Mechanical Tearing based Cell Disruption Capability to Shape Nanostructures formed on Nanoporous Alumina Filter)

  • 이용훈;한의돈;김병희;서영호
    • 한국생산제조학회지
    • /
    • 제26권1호
    • /
    • pp.1-5
    • /
    • 2017
  • This study investigated the mechanical tearing of a cell membrane using a nanostructured alumina filter for easy and quick mechanical cell disruption. Nanostructured alumina filters were prepared by a multi-step aluminum anodizing process and nanopore etching process. Six different types of nanostructures were formed on the surface of the nanoporous alumina filters to compare the mechanical cell disruption characteristics according to the shape of the nanostructure. The prepared alumina filter was assembled in a commercial filter holder, and then, NIH3T3 fibroblast cells in a buffer solution were passed through the nanostructured alumina filter at a constant pressure. By measuring the concentration of proteins and DNA, the characteristics of mechanical cell disruption of the nanostructured alumina filter were investigated.

가중함수법에 의한 기계적 체결부에 존재하는 타원형 모서리균열의 혼합모드 응력확대계수 (Mixed-Mode Stress intensity Factors for Elliptical Corner Cracks in Mechanical Joints by Weight Function Method)

  • 허성필;양원호;김철
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.703-713
    • /
    • 2001
  • Mechanical joints such as bolted or riveted joints are widely used in structural components and the reliable determination of the stress intensity factors for corner cracks in mechanical joints is needed to evaluate the safety and fatigue life. This paper analyzes the mixed-mode stress intensity factors of surface and deepest points for quarter elliptical corner cracks in mechanical joints by weight function method and the coefficients included in weight function are determined by finite element analyses for reference loadings. The extended form of the weight function method for two-dimensional mixed-mode to three-dimensional is presented and the number of terms in weight function is determined by comparing the results for the different number of terms. The amount of clearance is an important factor in evaluating the severity of elliptical corner cracks in mechanical joints and even horizontal crack normal to the applied load is under mixed-mode in the case that clearance exists.

마이크로 전기${\cdot}$화학 복합형상 제거시스템 (Microfactory for Electro-Chemical Machining)

  • 이희원;국경훈;김기원;김태곤;유병한;정재원;한민섭;정영훈;민병권;이상조
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.389-394
    • /
    • 2005
  • Microfactory is effective method for machining micro size component. Electro-chemical machining can be more suitable to a microfactory than other machining methods in terms of maintaining high accuracy. Surface profile of EDM Machined component is predicted by micro EDM simulation using superpositioning spark crater. Planar motor and micro pump are developed to construct microfactory system.

  • PDF

마이크로 표면 구조를 가지는 CMP 패드의 연마 특성 평가 (Evaluation of Chemical Mechanical Polishing Performances with Microstructure Pad)

  • 정재우;박기현;장원문;박성민;정석훈;이현섭;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.651-652
    • /
    • 2005
  • Chemical mechanical polishing (CMP) has emerged as the planarization technique of choice in integrated circuit manufacturing. Especially, polishing pad is considered as one of the most important consumables because of its properties. Generally, conventional polishing pad has irregular pores and asperities. If conditioning process is except from whole polishing process, smoothing of asperities and pore glazing occur on the surface of the pad, so repeatability of polishing performances cannot be expected. In this paper, CMP pad with microstructure was made using micro-molding technology and repeatability of ILD(interlayer dielectric) CMP performances and was evaluated.

  • PDF

열압착 온도가 전기방사 Polyacrylonitrile 분리막의 기계적 강도 및 물성치에 미치는 영향 (Effect of Thermal Pressing Temperature on the Mechanical and Material Properties of Electro-spun Polyacrylonitrile Nano-fibrous Separator)

  • 김민철;고태조;와카스 울 아리핀;동정
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.109-116
    • /
    • 2019
  • The mechanical deformation of a battery separator causes internal short-circuiting of the cathode - anode, which directly affects the explosion/ignition of batteries. To increase the mechanical properties of the separator fabricated by electro-spinning, use of a thermal pressing method is inevitable. Therefore, this research aims to maximize the mechanical strength of a porous separator by finding the proper thermal press temperatures given to Electro-spun Polyacrylonitrile (PAN) nanofibers. The different thermal press temperatures $25^{\circ}C$, $50^{\circ}C$, $75^{\circ}C$, and $100^{\circ}C$ were applied to the electro-spun fiber at 30 MPa pressure for one hour. The higher the temperature, the higher the resultant tensile strength; however, a higher temperature also lowered the strain and porosity. Thus, the membrane thermal pressed at $50^{\circ}C$ showed the best mechanical properties and the second highest porosity. Using the data, $50^{\circ}C$ was judged as the best thermal pressing temperature in terms of performance.

異性材料 마찰용접부의 기계적 성질검사 (Testing of Mechanical Properties on Dissimilar Metal Friction Welds)

  • 나석주
    • 대한기계학회논문집
    • /
    • 제8권1호
    • /
    • pp.41-47
    • /
    • 1984
  • Increase of the requirements on quality of welded structures necessitates the improvement of known inspection methods and the introduction of progressive new techniques. Non-destructive methods are the most advanced, but there are considerable difficulties in using the methods of radiography with electromagnetic rays and ultrasonic testing in the inspection of dissimilar metal friction welds, because their physical and mechanical properties are changed very rapidly at the interface. The values of simple mechanical test for dissimilar metal friction welds have always been dubious, as the strength of the bond is often greater than that of the softer materials being jointed. Thus, in this paper some conventional mechanical testing methods are examined in an attempt to determine a technique for dissimilar metal friction welds, which will give a reliable quantitative indication of the weld quality. From the considered static and dynamic testing methods the impact bending test on unnotched and notched specimens are the most sensitive to find out the small joining defects in the interface.

왕겨분말 복합재료의 기계적 특성에 미치는 제조인자의 영향 (Effect of Manufacturing Factors on Mechanical Properties of the Rice-husk Powder Composites)

  • 최준용;;윤호철;임재규
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.794-799
    • /
    • 2006
  • In recent years, the use of natural fiber as reinforcement in polymer composites to replace synthetic fiber such as glass fiber is receiving increasing attention. Because of increasing usage according to the high demand, the cost of thermoplastic has increased rapidly over the past decades. We used a thermoplastic polymer(polypropylene) as the matrix and a lignocellulosic material(rice-husk flour) as the reinforcement filler to prepare a particle-reinforced composite to examine the possibility of using lignocellulosic material as reinforcement filler and to determine data of test results for physical, mechanical and morphological properties of the composite according to the reinforcement filler content in respect to thermoplastic polymer, In this study, PLA/PP rice-husk fiber-reinforced thermoplastic composites that made by the hot press molding method according to appropriate manufacturing process was evaluated as mechanical properties.

보강된 복합적층 패널의 좌굴 및 좌굴후 거동의 형상 최적설계에 관한 연구 (A Study on Shape Optimization for Buckling and Postbuckling Behavior of Stiffened Laminated Composite Panels)

  • 이광록;정기현;허성필;양원호;조명래
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.106-114
    • /
    • 2001
  • In this study, a shape optimization of stiffener was conducted to increase buckling load or failure load in each case with a different design value and a different objective function for stiffened laminated composite panel of I-type under compression loading. Regarding each of buckling load or failure load as objective function, optimum design was carried out. In respect of optimum design, the effects of relative length of web and cab of stiffener on buckling load or failure load of postbuckling were investigated.

방전과 엔드밀링이 결합된 하이브리드 공정의 가공특성 (Machining Characteristics of the Hybrid Machining System Comprising of EDM and Endmilling)

  • 김민엽;이상평;김정현;고태조
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.86-92
    • /
    • 2016
  • Mechanical milling, in association with electrical discharge machining (EDM) for hybrid machining, is presented in this paper. An end mill cutting tool, an electrode of the EDM, was used for the system. That means that some parts were cut by the mechanical cutting process and others by the EDM. The possibility of combining both processes was simulated with the cutting simulation software. In addition, the machining reality was verified by measuring the electrical signal from the EDM power supply, which was measured in time and frequency domains. From this initial research, the hybrid machining system proposed in this paper appears to be well suited for difficult to cut material processing.