• 제목/요약/키워드: Mechanical ball milling

검색결과 271건 처리시간 0.03초

Investigation on Size Distribution of Tungsten-based Alloy Particles with Solvent Viscosity During Ultrasonic Ball Milling Process (초음파 볼밀링 공정에 의한 용매 점도 특성에 따른 텅스텐계 합금 분쇄 거동)

  • Ryu, KeunHyuk;So, HyeongSub;Yun, JiSeok;Kim, InHo;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • 제26권3호
    • /
    • pp.201-207
    • /
    • 2019
  • Tungsten heavy alloys (W-Ni-Fe) play an important role in various industries because of their excellent mechanical properties, such as the excellent hardness of tungsten, low thermal expansion, corrosion resistance of nickel, and ductility of iron. In tungsten heavy alloys, tungsten nanoparticles allow the relatively low-temperature molding of high-melting-point tungsten and can improve densification. In this study, to improve the densification of tungsten heavy alloy, nanoparticles are manufactured by ultrasonic milling of metal oxide. The physical properties of the metal oxide and the solvent viscosity are selected as the main parameters. When the density is low and the Mohs hardness is high, the particle size distribution is relatively high. When the density is high and the Mohs hardness is low, the particle size distribution is relatively low. Additionally, the average particle size tends to decrease with increasing viscosity. Metal oxides prepared by ultrasonic milling in high-viscosity solvent show an average particle size of less than 300 nm based on the dynamic light scattering and scanning electron microscopy analysis. The effects of the physical properties of the metal oxide and the solvent viscosity on the pulverization are analyzed experimentally.

Electrochemical Behavior of Si/Cu/Graphite Composite Anode for Lithium Secondary Battery (리튬이차전지용 Si/Cu/Graphite 복합체 음극의 전기화학적 거동)

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • 제12권2호
    • /
    • pp.162-166
    • /
    • 2009
  • The carbon-coated Si/Cu powders were synthesized by mechanical ball-milling and hydrocarbon gas decomposition methods at high temperature. The carbon-coated Si/Cu powder was used as anode for lithium secondary battery and its electrochemical behavior was investigated. In addition, the carbon-coated Si/Cu/graphite composite anode material was prepared using natural graphite powder and their electrochemical characteristics were compared with natural graphite anode. The specific capacity of carbon-coated Si/Cu anode increased to the initial 10 cycles. The carbon-coated Si/Cu/graphite composite anode exhibited the reversible specific capacity of 450mAh/g and the first cycle efficiency of 81.3% at $0.25mA/cm^2$. The cycling performance of the composite anode was similar to that of pure graphite anode except the reversible specific capacity value.

Mechanical Properties and Fabrication of Nanostructured (Ti,Mo)Si2 by Pulsed Current Activated Combustion (펄스전류활성 연소합성에 의한 나노구조 (Ti,Mo)Si2 제조 및 기계적 특성)

  • Ko, In-Yong;Park, Na-Ra;Oh, Se-Hoon;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • 제49권8호
    • /
    • pp.608-613
    • /
    • 2011
  • Nanopowders of Mo, Ti and Si were made by high-energy ball milling. A dense nanostructured $(Ti,Mo)Si_2$ compound was sintered by the pulsed current activated combustion method within two minutes from mechanically activated powder of Mo, Ti and Si. A highly dense $(Ti,Mo)Si_2$ compound was produced under simultaneous application of 80 MPa pressure and a pulsed current. The mechanical properties and micorostructure were investigated. The hardness and fracture toughness of the $(Ti,Mo)Si_2$ were $1030kg/mm^2$ and $4.9MPa{\cdot}m^{1/2}$, respectively. The mechanical properties were higher than monolithic $TiSi_2$.

The Property of TiO2 Powder Made with a 1000rpm MA Machine (1000rpm의 MA 장치로 TiO2 합성 시 형성된 분말의 특성)

  • Lee, Yong-Bok;Kwon, Jun-Hyun
    • Journal of Hydrogen and New Energy
    • /
    • 제22권3호
    • /
    • pp.349-356
    • /
    • 2011
  • During the process of synthesis of $TiO_2$ powders using a high-speed planetary milling machine, Fe metallic powders were created which could be dissolved in sulfuric acid solution. With adding $NH_4OH$ solution to the $TiO_2$ powder, it was found that the crystal structure of the synthesized powder did not change and the crystal size decreased slightly. However, when the sulfur powder is mixed with $TiO_2$, the crystal structure of the MA powder was changed from anatase into rutile phase and its size decreased significantly which is in the order of nm in diameter. In case of mechanical alloying with $TiO_2$ powder only, the crystal structure of the powder was transformed into rutile phase and its size was greatly reduced into several nm. Because its size becomes fine, the energy band gap of its rutile phase is larger than that of bulk states (3.0eV).

Fabrication and Characterization of ODS 316L Stainless Steels (산화물 분산강화형 316L 스테인리스강의 제조와 특성 연구)

  • Kim, Min-Ho;Ryu, Ho-Jin;Kim, Sung-Soo;Han, Chang-Hee;Jang, Jin-Sung;Kwon, Oh-Jong
    • Journal of Powder Materials
    • /
    • 제16권2호
    • /
    • pp.122-130
    • /
    • 2009
  • Austenitic oxide-dispersion-strengthened (ODS) stainless steel was fabricated using a wet mixing process without a mechanical milling in order to reduce contaminations of impurities during their fabrication process. Solution of yttrium nitrate was dried after a wet mixing with 316L stainless steel powder. Carbon and oxygen contents were effectively reduced by this wet processing. Microstructural analysis showed that coarse yttrium silicates of about 150 nm were formed in austenitic ODS steels with a silicon content of about 0.8 wt%. Wet-processed austenitic ODS steel without silicon showed higher yield strength by the presence of finer oxide of about 20 nm.

Rapid Synthesis and Consolidation of Nanostructured Ti-TiC Composites from TiH2 and CNT by Pulsed Current Activated Heating

  • Park, Na-Ra;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • 제25권1호
    • /
    • pp.48-53
    • /
    • 2015
  • $TiH_2$ nanopowder was made by high energy ball milling. The milled $TiH_2$ and CNT powders were then simultaneously synthesized and consolidated using pulsed current activated sintering (PCAS) within one minute under an applied pressure of 80 MPa. The milling did not induce any reaction between the constituent powders. Meanwhile, PCAS of the $TiH_2$-CNT mixture produced a Ti-TiC composite according to the reaction ($0.92TiH_2+0.08CNT{\rightarrow}0.84Ti+0.08TiC+0.92H_2$, $0.84TiH_2+0.16CNT{\rightarrow}0.68Ti+0.16TiC+0.84H_2$). Highly dense nanocrystalline Ti-TiC composites with a relative density of up to 99.7% were obtained. The hardness and fracture toughness of the dense Ti-8 mole% TiC and Ti-16 mole% TiC produced by PCAS were also investigated. The hardness of the Ti-8 mole% TiC and Ti-16 mole% TiC composites was higher than that of Ti. The hardness value of the Ti-16 mole% TiC composite was higher than that of the Ti-8 mole% TiC composite without a decrease in fracture toughness.

Hydrogen Desorption and Absorption Properties of MgH2, LiBH4, and MgH2 + LiBH4 Composite

  • Park, Hye Ryoung;Song, Myoung Youp
    • Korean Journal of Metals and Materials
    • /
    • 제50권12호
    • /
    • pp.955-959
    • /
    • 2012
  • To increase the hydrogen storage capacity of Mg-based materials, a sample with a composition of 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ was prepared by planetary ball milling under hydrogen. The absorption and desorption properties of unmilled $MgH_2$, unmilled $LiBH_4$, and 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ were examined. At 648 K the unmilled $MgH_2$ desorbed 5.70 wt% for 60 min. The unmilled $LiBH_4$ desorbed 6.40 wt% H for 780 min at 673 K. The 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ sample desorbed 3.10 wt% H for 50 min, and 3.32 wt% H for 300 min at 623 K at the second cycle.

Controlling Particle Size of Recycled Copper Oxide Powder for Copper Thermite Welding Characteristics (동 테르밋 용접 특성 향상을 위한 폐 산화동 분말 입도 제어 연구)

  • Hansung Lee;Minsu Kim;Byungmin Ahn
    • Journal of Powder Materials
    • /
    • 제30권4호
    • /
    • pp.332-338
    • /
    • 2023
  • Thermite welding is an exceptional process that does not require additional energy supplies, resulting in welded joints that exhibit mechanical properties and conductivity equivalent to those of the parent materials. The global adoption of thermite welding is growing across various industries. However, in Korea, limited research is being conducted on the core technology of thermite welding. Currently, domestic production of thermite powder in Korea involves recycling copper oxide (CuO). Unfortunately, controlling the particle size of waste CuO poses challenges, leading to the unwanted formation of pores and cracks during thermite welding. In this study, we investigate the influence of powder particle size on thermite welding in the production of Cu-thermite powder using waste CuO. We conduct the ball milling process for 0.5-24 h using recycled CuO. The evolution of the powder shape and size is analyzed using particle size analysis and scanning electron microscopy (SEM). Furthermore, we examine the thermal reaction characteristics through differential scanning calorimetry. Additionally, the microstructures of the welded samples are observed using optical microscopy and SEM to evaluate the impact of powder particle size on weldability. Lastly, hardness measurements are performed to assess the strengths of the welded materials.

The Machining Technique of Curved Surface through Constant Control of Cutting Speed Method in Ball End Milling (볼엔드밀 고속가공에서 곡면형상에 따른 절삭속도 일정제어기법 가공기술)

  • Kim, K.K.;Moon, S.J.;Kang, M.C.;Lee, D.W.;Kim, J.S.
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.753-759
    • /
    • 2001
  • The purpose of this study is to suggest the machining technique of the constant control of cutting speed in order to improve precision machining and tool life in high speed machining using ball end mill. Cutting speed is changed in machining free form surface like free form surface. So, we don't have supreme surface form and toll life on machining. The way to solving this problem is that we should be settled to optimal cutting speed in free form surface machining. And, to improve precision machining is executed high speed machining method to output optimum NC data with developed constant control of cutting speed program after modeling of CAD/CAM. In this paper, a comparison was made of the cutting precision and tool life in conventional cutting and those in free form surface machining applying the program developed.

  • PDF

Mechanical Alloying Effect in Immiscible Cu30Mo70 Powders (비고용 Cu30Mo70계 혼합분말의 기계적 합금화 효과)

  • 이충효;이성희;이상진;권영순
    • Journal of Powder Materials
    • /
    • 제10권1호
    • /
    • pp.46-50
    • /
    • 2003
  • Lee et al. reported that a mixture of Cu and Ta, the combination of which is characterized by a positive heat of mixing, $\{Delta}H_{mix}$ of +2 kJ/㏖, can be amorphized by mechanical alloying(MA). It is our aim to investigate to what extent the MA is capable of producing a non-equilibrium phase with increasing the heat of mixing. The system chosen is the binary $Cu_{30}Mo_{70}$ with $\{Delta}H_{mix}$=+19 kJ/㏖. The mechanical alloying was carried out using a Fritsch P-5 planetary mill under Ar gas atmosphere. The vial and balls are made of Cu containing 1.8-2.0 wt.%Be to avoid contaminations arising mainly from Fe when steel balls and vial are used. The MA powders were characterized by the X-ray diffraction, EXAFS and thermal analysis. We conclude that two phase mixture of nanocrystalline fcc-Cu and bcc-Mo with grain size of 10 nm is formed by the ball-milling for a 3:7 mixture of pure Cu and Mo, the evidence for which has been deduced from the thermodynamic and structural analysis based on the DSC, X-ray diffraction and EXAFS spectra.