DOI QR코드

DOI QR Code

Mechanical Properties and Fabrication of Nanostructured (Ti,Mo)Si2 by Pulsed Current Activated Combustion

펄스전류활성 연소합성에 의한 나노구조 (Ti,Mo)Si2 제조 및 기계적 특성

  • Ko, In-Yong (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Park, Na-Ra (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Oh, Se-Hoon (Department of Mechanical Engineering, Chung-Ang University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
  • 고인용 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 박나라 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 오세훈 (중앙대학교 기계공학과) ;
  • 손인진 (전북대학교 신소재공학부 신소재개발연구센터)
  • Received : 2011.02.17
  • Published : 2011.08.25

Abstract

Nanopowders of Mo, Ti and Si were made by high-energy ball milling. A dense nanostructured $(Ti,Mo)Si_2$ compound was sintered by the pulsed current activated combustion method within two minutes from mechanically activated powder of Mo, Ti and Si. A highly dense $(Ti,Mo)Si_2$ compound was produced under simultaneous application of 80 MPa pressure and a pulsed current. The mechanical properties and micorostructure were investigated. The hardness and fracture toughness of the $(Ti,Mo)Si_2$ were $1030kg/mm^2$ and $4.9MPa{\cdot}m^{1/2}$, respectively. The mechanical properties were higher than monolithic $TiSi_2$.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Vojtech D, Barbora D, and Kubatik T. Mater. Sci. Eng. A 361, 50 (2003). https://doi.org/10.1016/S0921-5093(03)00564-1
  2. Rosenkranz R, Frommeyer G, and Smarsly W. Mater. Sci. Eng. A 152, 288 (1992). https://doi.org/10.1016/0921-5093(92)90081-B
  3. Yang WY, Iwakuro H, Yagi H, Kuroda T, and Nakamura S, Jpn. J. Appl. Phys. 23, 1560 (1984). https://doi.org/10.1143/JJAP.23.1560
  4. G. Sauthoff, Intermetallics, VCH Publishers, New York, 1995.
  5. Y. Ohya, M. Hoffmann, and G. Petzow, J. Mater. Sci. Lett. 12, 149 (2004).
  6. S. K. Bhaumik, C. Divakar, A. K. Singh, and G. S. Upadhyaya, J. Mater. Sci. Eng. A 279, 275 (2000). https://doi.org/10.1016/S0921-5093(99)00217-8
  7. D.Y. Oh, H. C. Kim, J.K. Yoon, and I.J. Shon, J. Alloys & Compounds 395, 174 (2005). https://doi.org/10.1016/j.jallcom.2004.10.072
  8. N.R. Park, I.Y. Ko, J. M. Doh, J.K. Yoon, and I.J. Shon, J. Ceramic Processing Research, sbumitted for publication (2011).
  9. J. Karch, R. Birringer, and H. Gleiter. Nature 330 (1987).
  10. A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413 (2001).
  11. D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002). https://doi.org/10.1016/S0925-8388(02)00067-1
  12. Z. Fang and J.W. Eason, Int. J. Refrac. 297 (1995).
  13. A.I.Y. Tok, I.H. Luo, and F.Y.C. Boey, J. Mate. Sci. Eng. A 229 (2004).
  14. I.Y. Ko, S.M. Chae, I. J. Shon, J. Kor. Inst. Met &Mater. 48, 417 (2010). https://doi.org/10.3365/KJMM.2010.48.05.417
  15. N.R. Park. M.K. Choe, J,S, Park. W. Kim, and I.J. Shon, Met. Mater. Inst. 15, 765 (2009). https://doi.org/10.1007/s12540-009-0765-x
  16. C.Suryanarayana, M.Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  17. O.Knacke, O.Kubaschewski, and K. Hesselmann, Thermochemical Properties of Inorganic Substances, Springer-Verlag, London (1991).
  18. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  19. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka- Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  20. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  21. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  22. B. R. Kim, K.S. Nam, J. K. Yoon, J. M. Doh, K. T. Lee, and I. J. Shon, J. Ceramics Processing Research 10, 171 (2009).
  23. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).
  24. Fu L., Cao LH., and Fan YS., Scripta Materialia 44, 1061 (2001). https://doi.org/10.1016/S1359-6462(01)00668-6