Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.12.955

Hydrogen Desorption and Absorption Properties of MgH2, LiBH4, and MgH2 + LiBH4 Composite  

Park, Hye Ryoung (School of Applied Chemical Engineering, Chonnam National University)
Song, Myoung Youp (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.12, 2012 , pp. 955-959 More about this Journal
Abstract
To increase the hydrogen storage capacity of Mg-based materials, a sample with a composition of 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ was prepared by planetary ball milling under hydrogen. The absorption and desorption properties of unmilled $MgH_2$, unmilled $LiBH_4$, and 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ were examined. At 648 K the unmilled $MgH_2$ desorbed 5.70 wt% for 60 min. The unmilled $LiBH_4$ desorbed 6.40 wt% H for 780 min at 673 K. The 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ sample desorbed 3.10 wt% H for 50 min, and 3.32 wt% H for 300 min at 623 K at the second cycle.
Keywords
hydrogen absorbing materials; mechanical alloying/milling; microstructure; X-ray diffraction; $MgH_2+LiBH_4$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Han and K. D. Park, Korean J. Met. Mater. 48, 1123 (2010).
2 J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967).   DOI
3 J. J. Reilly and R. H. Wiswall, Inorg. Chem. 7, 2254 (1968).   DOI
4 M. H. Mintz, Z. Gavra, and Z. Hadari, J. Inorg. Nucl. Chem. 40, 765 (1978).   DOI   ScienceOn
5 M. Pezat, A. Hbika, B. Darriet, and P. Hagenmuller, Mater. Res. Bull. 14, 377 (1979).   DOI   ScienceOn
6 Q. Wang, J. Wu, M. Au, and L. Zhang, in: T. N. Veziroglu, J. B. Taylor (Eds.), Proceedings of the Fifth World Hydrogen Energy Conference (Hydrogen, Energy Progress V), Vol. 3, pp.1279-1290, Toronto, Canada, Pergamon, NewYork (1984).
7 E. Akiba, K. Nomura, S. Ono, and S. Suda, Int. J. Hydrogen Energy 7, 787 (1982).   DOI   ScienceOn
8 S. H. Hong, S. N. Kwon, and M. Y. Song, Korean J. Met. Mater. 49, 298 (2011).   DOI
9 K. I. Kim and T. W. Hong, Korean J. Met. Mater. 49, 264 (2011).   DOI   ScienceOn
10 J. M. Boulet and N. Gerard, J. Less-Common Met. 89, 151 (1983).   DOI   ScienceOn
11 M. Y. Song, S. N. Kwon, S. H. Hong, and H. R. Park, Met. Mater. Int. 18, 279 (2012).   DOI   ScienceOn
12 B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976).   DOI   ScienceOn
13 F. G. Eisenberg, D. A. Zagnoli, and J. J. Sheridan III, J. Less-Common Met. 74, 323 (1980).   DOI   ScienceOn
14 M. Au and R. Tom Walters, Int. J. Hydrogen Energy 35, 10311 (2010).   DOI   ScienceOn
15 C. Li, P. Peng, D. W. Zhou, and L. Wan, Int. J. Hydrogen Energy 36, 14512 (2011).   DOI   ScienceOn
16 G. L. Xia, Y. H. Guo, Z. Wu, and X. B. Yu, J. Alloys Compd. 479, 545 (2009).   DOI   ScienceOn
17 G. S. Walker, D. M. Grant, T. C. Price, and X. Yu, V. Legrand, J. Power Sources 194, 1128 (2009).   DOI   ScienceOn
18 B. C. Weng, X. B. Yu, Z. Wu, Z. L. Li, T. S. Huang, N. X. Xu, and J. Ni, J. Alloys Compd. 503, 345 (2010).   DOI   ScienceOn
19 T. Nakagawa, T. Ichikawa, N. Hanada, Y. Kojima, and H. Fujii, J. Alloys Compd. 446, 306 (2007).
20 F. E. Pinkerton and M. S. Meyer, J. Alloys Compd. 464, L1 (2008).   DOI   ScienceOn