Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.8.608

Mechanical Properties and Fabrication of Nanostructured (Ti,Mo)Si2 by Pulsed Current Activated Combustion  

Ko, In-Yong (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
Park, Na-Ra (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
Oh, Se-Hoon (Department of Mechanical Engineering, Chung-Ang University)
Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.8, 2011 , pp. 608-613 More about this Journal
Abstract
Nanopowders of Mo, Ti and Si were made by high-energy ball milling. A dense nanostructured $(Ti,Mo)Si_2$ compound was sintered by the pulsed current activated combustion method within two minutes from mechanically activated powder of Mo, Ti and Si. A highly dense $(Ti,Mo)Si_2$ compound was produced under simultaneous application of 80 MPa pressure and a pulsed current. The mechanical properties and micorostructure were investigated. The hardness and fracture toughness of the $(Ti,Mo)Si_2$ were $1030kg/mm^2$ and $4.9MPa{\cdot}m^{1/2}$, respectively. The mechanical properties were higher than monolithic $TiSi_2$.
Keywords
compound; nanostructure; sintering; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Vojtech D, Barbora D, and Kubatik T. Mater. Sci. Eng. A 361, 50 (2003).   DOI   ScienceOn
2 Rosenkranz R, Frommeyer G, and Smarsly W. Mater. Sci. Eng. A 152, 288 (1992).   DOI   ScienceOn
3 Yang WY, Iwakuro H, Yagi H, Kuroda T, and Nakamura S, Jpn. J. Appl. Phys. 23, 1560 (1984).   DOI
4 G. Sauthoff, Intermetallics, VCH Publishers, New York, 1995.
5 Y. Ohya, M. Hoffmann, and G. Petzow, J. Mater. Sci. Lett. 12, 149 (2004).
6 S. K. Bhaumik, C. Divakar, A. K. Singh, and G. S. Upadhyaya, J. Mater. Sci. Eng. A 279, 275 (2000).   DOI   ScienceOn
7 D.Y. Oh, H. C. Kim, J.K. Yoon, and I.J. Shon, J. Alloys & Compounds 395, 174 (2005).   DOI   ScienceOn
8 N.R. Park, I.Y. Ko, J. M. Doh, J.K. Yoon, and I.J. Shon, J. Ceramic Processing Research, sbumitted for publication (2011).
9 J. Karch, R. Birringer, and H. Gleiter. Nature 330 (1987).
10 A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413 (2001).
11 D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002).   DOI   ScienceOn
12 Z. Fang and J.W. Eason, Int. J. Refrac. 297 (1995).
13 A.I.Y. Tok, I.H. Luo, and F.Y.C. Boey, J. Mate. Sci. Eng. A 229 (2004).
14 I.Y. Ko, S.M. Chae, I. J. Shon, J. Kor. Inst. Met &Mater. 48, 417 (2010).   DOI   ScienceOn
15 N.R. Park. M.K. Choe, J,S, Park. W. Kim, and I.J. Shon, Met. Mater. Inst. 15, 765 (2009).   DOI   ScienceOn
16 C.Suryanarayana, M.Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
17 O.Knacke, O.Kubaschewski, and K. Hesselmann, Thermochemical Properties of Inorganic Substances, Springer-Verlag, London (1991).
18 Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).   DOI   ScienceOn
19 J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka- Kumar, Appl. Phys. Lett. 85, 573 (2004).   DOI   ScienceOn
20 J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004).   DOI   ScienceOn
21 Fu L., Cao LH., and Fan YS., Scripta Materialia 44, 1061 (2001).   DOI   ScienceOn
22 J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003).   DOI   ScienceOn
23 B. R. Kim, K.S. Nam, J. K. Yoon, J. M. Doh, K. T. Lee, and I. J. Shon, J. Ceramics Processing Research 10, 171 (2009).
24 K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).