• Title/Summary/Keyword: Mechanical and Electrical properties

Search Result 1,778, Processing Time 0.032 seconds

Mechanical and Electrical Failure of ITO Film with Different Shape during Twisting Deformation (비틀림 변형 중 ITO 필름의 시편 형태에 따른 기계적 전기적 파괴 연구)

  • Kwon, Y.Y.;Kim, Byoung-Joon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.53-57
    • /
    • 2017
  • The most representative transparent electrode in the modern society is ITO (Indium Tin Oxide). ITO is widely used in general for touch panels and displays due to its high electrical and optical properties. However, in general, mechanical deformation causes deterioration and destruction of device properties because ITO is basically vulnerable to mechanical deformation. Therefore, the in-depth understanding on the stability of ITO film during various mechanical deformations is necessary. In this study, the reliability and mechanical properties ITO sample having different length, width, and area were investigated. The electrical stability was estimated according to electrical resistance change. The stability was dropped as the sample length, and width increased and the sample area decreased. The electrical stability of ITO film was correlated with twisting strain including tensile, compressive and shear stress.

Mechanical properties of polycrystalline 3C-SiC thin films with various doping concentrations (도핑 농도에 따른 다결정 3C-SiC 박막의 기계적 특성)

  • Lee, Yun-Myung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.368-369
    • /
    • 2008
  • This paper describes the mechanical properties of poly(polycrystalline) 3C-SiC thin film with various doping concentration, in which poly 3C-SiC thin film's mechanical properties according to the n-doping concentration 1%$(9.2\times10^{15}cm^{-3})$, 3%$(5.2\times10^{17}cm^{-3})$, and 5%$(6.8\times10^{17}cm^{-3})$ respectively was measured by nano indentation. In the case of $9.2\times10^{15}^{-3}$ n-doping concentration, Young's Modulus and hardness were obtained as 270 GPa and 30 GPa, respectively. When the surface roughness according to n-doping concentrations was investigated by AFM(atomic force microscope), the roughness of poly 3C-SiC thin film doped by 5% concentration was 15 nm, which is also the best of them.

  • PDF

The Effect of Titanate Coupling Agents on the Electrical and Mechanical Properties of PVC-Ni Composite Systems (PVC-Ni 복합재의 전기적 ${\cdot}$ 기계적 성질에 미치는 Titanate Coupling Agent 의 영향)

  • Tak Jin Moon;Mi Kyung Lee;Sun Ho Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.319-327
    • /
    • 1985
  • The effect of titanate coupling agents on the electrical and mechanical properties of conductive poly (vinyl chloride)-nickel composite was studied as functions of filler concentration, the variation of the amount of titanate coupling agents and the type of titanate coupling agents. It was found that the electrical and mechanical properties of PVC-Ni system were improved by the treatment of titanate coupling agents, but the excessive use of titanate coupling agents influenced to give worse properties.

  • PDF

Thermal stabilities and dynamic mechanical properties of dielectric materials for thermal imprint lithography (임프린트 공법적용을 위한 절연재료의 열적, 기계적 성질)

  • Cho, Jae-Choon;Ra, Seung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.220-221
    • /
    • 2007
  • Recently, imprint lithography have received significant attention due to an alternative technology for photolithography on high performance microelectronic devices. In this work, we investigated thermal stabilities and dynamic mechanical properties of dielectric materials for thermal imprint lithography. Curing behaviours, thermal stabilities, and dynamic mechanical properties of the dielectric materials cured with various curing agent and spherical filler were studied using dynamic differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), rheometer and universal test machine(UTM).

  • PDF

Toughnening of Dielectric Material by Thermoplastic Polymer

  • Lee, Jung-Woo;Cho, Jae-Choon;Ra, Seung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.207-208
    • /
    • 2007
  • Recently, high performance microelectronic devices are designed in multi-layer structure in order to make dense wiring of metal conductors in compact size. Imprint lithography have received significant attention due to an alternative technology for photolithography on such devices. In this work, we synthesized dielectric composite materials based on epoxy resin, and investigated their thermal stabilities and dynamic mechanical properties for thermal imprint lithography. In order to enhance the mechanical properties and toughness of dielectric material, various modified polyetherimide(PEI) was applied in the resin system. Curing behaviours, thermal stabilities, and dynamic mechanical properties of the dielectric materials cured with various conditions were studied using dynamic differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), and Universal Test Method (INSTRON).

  • PDF

Phase Transformation and Mechanical Properties on Sintering Temperature of $\alpha$-SiC Manufactured by Pressureless Sintering ($\beta$-SiC의 상압소결시 소결온도에 따른 상전이와 기계적 특성 변화)

  • Ju, Jin-Young;Shin, Yong-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1433-1435
    • /
    • 2001
  • The mechanical and phase transformation of the cold isostatically pressed $\beta$-SiC ceramic were investigated as a function of the sintering temperature. The result of phase analysis revealed 6H, 4H, 3C and phase transformation between 3C and 4H showed over 2000$^{\circ}C$ and the $\beta$ ${\rightarrow}$ $\alpha$ phase transformation was in saturation at 2200$^{\circ}C$. The relative density and the mechanical properties of $\alpha$-SiC ceramic was increased with increased sintering temperature. The flexural strength showed the highest value of 230 MPa at 2200$^{\circ}C$. This reason is because crack was propagated through surface flaw. The fracture toughness showed the highest value of 4.2 $MPa{\cdot}m^{1/2}$ at 2200$^{\circ}C$.

  • PDF

Fabrication of Nanoscale Metal Nanobeam Specimens and Evaluation of the Mechanical Properties of Gold Thin Film Nanostructures (나노스케일의 금속 나노빔 시험편 제작 및 이를 이용한 금 박막 나노 구조물의 기계적 물성 평가)

  • Baek, Chang-Wook;Hyeon, Ik-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1294-1297
    • /
    • 2007
  • In this paper, fabrication techniques for nanoscale metallic nanobeam specimens have been proposed, and mechanical properties of the fabricated gold nanobeams have been evaluated by nanoindentation techniques and nanobeam bending test. Elastic modulus and hardness of gold nanobeams were measured to be $109.6\;{\pm}\;10\;GPa\;and\;1.73\;{\pm}\;0.3\;GPa$, respectively, from the nanoindentation test, while elastic modulus was $241\;{\pm}\;7\;GPa$ from the nanobeam bending test.

Mechanical Strength Analysis of Ultra High Voltage Suspension Insulator (초고압 현수애자의 기계적 강도 해석)

  • 조한구;한세원;박기호;이동일;안용호;최연규
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.776-779
    • /
    • 2001
  • The main objective of this paper is to design and mechanical strength analysis of UHV(Ultra High Voltage) suspension insulator. One of the important properties required for suspension insulators is mechanical strength under tensile load. The cement and porcelain part are express according to change of pin head type an aspect mechanical stress. These insulators are designed and produced by using the computer analysis of mechanical, electrical and electrical stresses together with the technical know-how accumulated from long years of study into every respect of insulators.

  • PDF

Mechanical properties of polycrystalline 3C-SiC thin films with various doping concentrations (도핑농도에 따른 다결정 3C-SiC 박막의 기계적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.256-260
    • /
    • 2008
  • This paper describes the mechanical properties of poly(polycrystalline) 3C-SiC thin films with various doping concentration, in which poly 3C-SiC thin fil's mechanical properties according to the n-doping concentration 1($9.2{\times}10^{15}cm^{-3}$), 3($5.2{\times}10^{17}cm^{-3}$), and 5%($6.8{\times}10^{17}cm^{-3}$) respectively were measured by nano indentation. In the case of $9.2{\times}10^{15}cm^{-3}n$-doping concentration, Young's modulus and hardness were obtained as 270 and 30 GPa, respectively. When the surface roughness according to n-doping concentrations was investigated by AFM(atomic force microscope), the roughness of poly 3C-SiC thin films doped by 5% concentration was 15 nm, which is also the best of them.

Study on Manufacturing and Characteristics of Silicone/EPDM Rubber Blend (실리콘/EPDM고무 블렌드의 제조와 특성에 관한 연구)

  • 김진국;이형규
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.406-413
    • /
    • 2001
  • Blending has become an interesting way for preparing new materials with tailored properties. Unfortunately, many materials are incompatible due to the difference in their viscoelastic properties, surface energy and interaction. Therefore, the properties of polymer blends are not obtained as expected levels. Silicone rubber has an excellent heat-resistance and electrical characteristics, and ethylene propylene diene monomer (EPDM) rubber also has good mechanical properties. The purpose of this study is to develop a new engineering material which has excellent electrical and mechanical properties through blending of silicone with EPDM rubber.

  • PDF