• 제목/요약/키워드: Mechanical Properties Optimization

검색결과 356건 처리시간 0.029초

SIMP 기반 절점밀도법에 의한 3 차원 위상최적화 (3-D Topology Optimization by a Nodal Density Method Based on a SIMP Algorithm)

  • 김철;팡난
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.412-417
    • /
    • 2008
  • In a traditional topology optimization method, material properties are usually distributed by finite element density and visualized by a gray level image. The distribution method based on element density is adequate for a great mass of 2-D topology optimization problems. However, when it is used for 3-D topology optimization, it is always difficult to obtain a smooth model representation, and easily appears a virtualconnect phenomenon especially in a low-density domain. The 3-D structural topology optimization method has been developed using the node density instead of the element density that is based on SIMP (solid isotropic microstructure with penalization) algorithm. A computer code based on Matlab was written to validate the proposed method. When it was compared to the element density as design variable, this method could get a more uniform density distribution. To show the usefulness of this method, several typical examples of structure topology optimization are presented.

  • PDF

어닐링 조건이 극저온 압연 5083 Al Alloy의 미세조직 및 기계적성질에 미치는 영향 (Effect of Annealing Conditions on Microstructures and Mechanical Properties of a 5083 Al Alloy deformed at Cryogenic Temperature)

  • 이영범;남원종
    • 소성∙가공
    • /
    • 제13권5호
    • /
    • pp.449-454
    • /
    • 2004
  • The annealing behavior of a 5083 Al alloy deformed at cryogenic temperature was investigated, focusing on the evolution of microstructures and mechanical properties. Especially, the effects of annealing temperature, $150~300^{\circ}C$, and time, 3∼60min., on microstructures and mechanical properties of the sheets received 85% reduction at cryogenic temperature were investigated. The optimization of the annealing conditions resulted in a mixture of equiaxed grains and elongated subgrains, exhibiting a good combination of uniform elongation and high strength.

불연속구조물의 배치최적설계를 위한 이점역이차근사법의 개발 (A Development of Two-Point Reciprocal Quadratic Approximation Mehtod for Configuration Optimization of Discrete Structures)

  • 박영선;임재문;양철호;박경진
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3804-3821
    • /
    • 1996
  • The configuration optimization is a structural optimization method which includes the coordinates of a structure as well as the sectional properties in the design variable set. Effective reduction of the weight of discrete structures can be obrained by changing the geometry while satisfying stress, Ei;er bickling, displacement, and frequency constraints, etc. However, the nonlinearity due to the configuration variables may cause the difficulties of the convergence and expensive computational cost. An efficient approximation method for the configuration optimization has been developed to overcome the difficulties. The method approximates the constraint functions based onthe second-order Taylor series expansion with reciprocal design variables. The Hessian matrix is approzimated from the information on previous design points. The developed algotithms are coded and the examples are solved.

Concurrent topology optimization of composite macrostructure and microstructure under uncertain dynamic loads

  • Cai, Jinhu;Yang, Zhijie;Wang, Chunjie;Ding, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.267-280
    • /
    • 2022
  • Multiscale structure has attracted significant interest due to its high stiffness/strength to weight ratios and multifunctional performance. However, most of the existing concurrent topology optimization works are carried out under deterministic load conditions. Hence, this paper proposes a robust concurrent topology optimization method based on the bidirectional evolutionary structural optimization (BESO) method for the design of structures composed of periodic microstructures subjected to uncertain dynamic loads. The robust objective function is defined as the weighted sum of the mean and standard deviation of the module of dynamic structural compliance with constraints are imposed to both macro- and microscale structure volume fractions. The polynomial chaos expansion (PCE) method is used to quantify and propagate load uncertainty to evaluate the objective function. The effective properties of microstructure is evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The proposed method is a non-intrusive method, and it can be conveniently extended to many topology optimization problems with other distributions. Several numerical examples are used to validate the effectiveness of the proposed robust concurrent topology optimization method.

소형펀치 시험과 역해석에 의한 재료의 유동응력 결정 (Inverse Analysis Approach to Flow Stress Evaluation by Small Punch Test)

  • 천진식
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1753-1762
    • /
    • 2000
  • An inverse method is presented to obtain material's flow properties by using small punch test. This procedure employs, as the objective function of inverse analysis, the balance of measured load-di splacement response and calculated one during deformation. In order to guarantee convergence to global minimum, simulated annealing method was adopted to optimize the current objective function. In addition, artificial neural network was used to predict the load-displacement response under given material parameters which is the most time consuming and limits applications of global optimization methods to these kinds of problems. By implementing the simulated annealing for optimization along with calculating load-displacement curve by neural network, material parameters were identified irrespective of initial values within very short time for simulated test data. We also tested the present method for error-containing experimental data and showed that the flow properties of material were well predicted.

Optimization of Suspension Under the Condition of Curved Track in Railway Vehicle

  • Choi, Jong Yoon;Li, Zheng Yuan;Baek, Seung Guk;Song, Ki Seok;Koo, Ja Choon;Choi, Yeon Sun
    • International Journal of Railway
    • /
    • 제7권2호
    • /
    • pp.57-63
    • /
    • 2014
  • This paper presents the optimization of suspension characteristics under the condition of curved track railway vehicles. Reducing lateral acceleration on curved track is an issue for high-speed railway vehicles. In terms of curved track running environments, reducing the lateral vibration of railway vehicles is critical to safety and curving performance. The properties of lateral damping and stiffness of both primary and secondary suspension show effect on wheel-set, bogie and car-body. Analysis for reducing the lateral vibration of rail vehicles with respect to the characteristics of both primary and secondary suspension has been developed using ADAMS/Rail. Response Surface Method has been chosen for the purpose of verifying correlation effects among design parameters. Also, this paper suggests the method for designing optimal suspension of railway vehicles on curved track. The optimization result indicates decrement of lateral acceleration on wheel-set by 3% and bogie by 1% on curved track. Finally, this paper comes to the conclusion that suspension system of railway vehicle (KTX I) is properly designed when regarding lateral vibration of railway vehicle on diverse curved track condition.

A topology optimization method of multiple load cases and constraints based on element independent nodal density

  • Yi, Jijun;Rong, Jianhua;Zeng, Tao;Huang, X.
    • Structural Engineering and Mechanics
    • /
    • 제45권6호
    • /
    • pp.759-777
    • /
    • 2013
  • In this paper, a topology optimization method based on the element independent nodal density (EIND) is developed for continuum solids with multiple load cases and multiple constraints. The optimization problem is formulated ad minimizing the volume subject to displacement constraints. Nodal densities of the finite element mesh are used a the design variable. The nodal densities are interpolated into any point in the design domain by the Shepard interpolation scheme and the Heaviside function. Without using additional constraints (such ad the filtering technique), mesh-independent, checkerboard-free, distinct optimal topology can be obtained. Adopting the rational approximation for material properties (RAMP), the topology optimization procedure is implemented using a solid isotropic material with penalization (SIMP) method and a dual programming optimization algorithm. The computational efficiency is greatly improved by multithread parallel computing with OpenMP to run parallel programs for the shared-memory model of parallel computation. Finally, several examples are presented to demonstrate the effectiveness of the developed techniques.

구동력을 고려한 자기장치의 레벨셋기반 위상최적설계 (Level Set Based Topology Optimization of Magnetic Device Considering Actuating Force)

  • 박상인;민승재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.643-645
    • /
    • 2008
  • To obtain weight reduction and high performance, level set based topology optimization in magnetic fields is promising for the design of magnetic devices where the precise boundary shape and topological chanages are required. Level set function is introduced to represent ferromagnetic material boundaries and material properties of the magnetic reluctivity are determined. The optimization problem is formulated for maximizing the actuating force in a prescribed direction under limited usage of ferromagnetic material.

  • PDF

모달 파라미터 정보를 활용한 PCB 물성 예측에 관한 연구 (A Study on the Prediction of the Mechanical Properties of Printed Circuit Boards Using Modal Parameters)

  • 추정환;정현범;홍상렬;김용갑;김재산
    • 대한기계학회논문집A
    • /
    • 제41권5호
    • /
    • pp.421-426
    • /
    • 2017
  • 본 연구에서는 횡등방성 특성을 갖는 인쇄회로기판(PCB)의 물성 예측을 위한 방법을 제안하였다. 등방성 소재와 달리 횡등방성 소재의 물성 취득을 위한 별도의 시험기준은 없으며, PCB와 같이 적층된 형태의 박판 구조물에 대해서는 재료시험 또한 쉽지가 않다. 모달시험을 통해 취득한 모달 파라미터와 상용 소프트웨어인 $OptiStruct^{(R)}$의 치수 최적화 기법을 활용, 시험-해석 간 주파수 차이를 최소화시키는 강성행렬 성분을 도출하여 기계적 물성을 예측하였다. 또한 주파수 별 모드형상을 MAC(Modal Assurance Criteria) 값을 기준으로 비교, 검토하여 예측 물성에 대한 유효성을 확인하였다. 제안된 방법은 향후 PCB를 포함하는 전장제품의 설계검증을 위한 구조해석에 확대 적용될 것으로 기대한다.

강도 및 강성 조건을 고려한 탄소섬유강화플라스틱(CFRP) 로어 컨트롤 아암의 치수 최적설계 (Sizing Optimization of CFRP Lower Control Arm Considering Strength and Stiffness Conditions)

  • 임주희;도재혁;유상혁;강오성;강건욱;이종수
    • 한국CDE학회논문집
    • /
    • 제21권4호
    • /
    • pp.389-396
    • /
    • 2016
  • The necessity for environment-friendly material development has emerged in the recent automotive field due to stricter regulations on fuel economy and environmental concerns. Accordingly, the automotive industry is paying attention to carbon fiber reinforced plastic (CFRP) material with high strength and stiffness properties while the lightweight. In this study, we determine a shape of lower control arm (LCA) for maximizing the strength and stiffness by optimizing the thickness of each layer when the stacking angle is fixed due to the CFRP manufacturing problems. Composite materials are laminated in the order of $0^{\circ}$, $90^{\circ}$, $45^{\circ}$, and $-45^{\circ}$ with a symmetrical structure. For the approximate optimal design, we apply a sequential two-point diagonal quadratic approximate optimization (STDQAO) and use a process integrated design optimization (PIDO) code for this purpose. Based on the physical properties calculated within a predetermined range of laminate thickness, we perform the FEM analysis and verify whether it satisfies the load and stiffness conditions or not. These processes are repeated for successive improved objective function. Optimized CFRP LCA has the equivalent stiffness and strength with light weight structure when compared to conventional aluminum design.