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Abstract 

In a traditional topology optimization method, material properties are usually distributed by finite element 
density and visualized by a gray level image. The distribution method based on element density is adequate 
for a great mass of 2-D topology optimization problems. However, when it is used for 3-D topology 
optimization, it is always difficult to obtain a smooth model representation, and easily appears a virtual-
connect phenomenon especially in a low-density domain. The 3-D structural topology optimization method 
has been developed using the node density instead of the element density that is based on SIMP (solid 
isotropic microstructure with penalization) algorithm. A computer code based on Matlab was written to 
validate the proposed method. When it was compared to the element density as design variable, this method 
could get a more uniform density distribution. To show the usefulness of this method, several typical 
examples of structure topology optimization are presented. 

1. Introduction 

The objective of the continuum structural topology 
optimization is to find out the optimum material 
distribution for a specified design domain, i.e., to find 
out an optimal load path between loading points and 
structural supports and provide an optimum distribution 
of materials after the minimization of structural 
compliance (i.e., maximization of stiffness). Since 
Bendsoe and Kikuchi (1) suggested the basic theory of 
topology optimization based on the homogenization 
method in 1988, topology optimization design has been 
rapidly developed by in-depth study and extensive 

research in terms of theories, methods and applications. 
During the past two decades, plenty of topology 
optimization techniques have been proposed by many 
researchers. Zhou and Rozvany (2) and Zhou et al. (3) 

developed a so-called SIMP algorithm, which consider 
the element densities as the design variables and assume 
that material properties are constant within each element 
for discretizing the design domain. Eschenauer et al. (4) 
and Eschenauer and Schumacher (5) proposed an 
approach which is called the “bubble method”. In this 
method, some characteristic functions of the strains, 
stresses and displacements were used in order to find the 
placement or location of holes for a known shape at 
optimal positions, and consequently, a solution is 
obtained in a prescribed structural topology fashion. 
Another approach so-called a level set method has been 
introduced into structural topology optimization by 
Sethian and Wiegmann (6). By this method, the structure 
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is represented by a level set model which is embedded in 
a scalar function. Xie and Steven (7) introduced an 
optimization method which is based on the evolutionary 
structural optimization approach. In the method, if the 
material in a design domain is not structurally active, it is 
considered as inefficiently used and can be removed by 
some element rejection criteria. 
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The SIMP (solid isotropic microstructure with 
penalization) method has attracted some researchers 
interested in the topology optimization due to its simple 
concept and rapid implementation. It is also known as 
“power-law approach”. The original SIMP method was 
introduced by Bendsoe (8), however, at that time it was 
expressed as a homogenization method under the name 
of “artificial density” or “the direct approach” in 1989. In 
the references (2, 3) a derivation of the SIMP method was 
also tried independently and the term SIMP was 
introduced first time in 1992. In the papers, a number of 
design conditions including stress constraints were 
applied. A similar approach was advocated by Mlejnek (9) 
and the SIMP method was coupled with the method of 
moving asymptotes. Sigmund (10, 11) and Sigmund and 
Petersson (12) discussed several drawbacks of the SIMP 
method including mesh-dependency, checkerboards 
patterns and local minima, and proposed a series of 
improvements by using mesh-independency filtering, 
higher order finite elements, a perimeter constraint and a 
gradient constraint. Bendsoe and Sigmund (13, 14) proved 
that the SIMP approach could be interpreted in physical 
terms as long as only the penalization power is a satisfied 
value. Pomezanski et al. (15) developed a so-called CO-
SIMP algorithm based on the direct corner contact 
penalization to suppress the corner contacts problems. 

In the SIMP method, material densities of all elements 
are considered to be constants and element relative 
densities are used as design variables to discretize a 
design domain. The final results of topology 
optimization are represented by a group of discontinuous 
step functions, which have the values between 1 (solid) 
and 0 (void). However, the problem is that these step 
functions have not afforded a smooth boundary layout 
unless an efficient finite element discretization technique 
is applied or a computational power improves through 
parallel computing (16), which, in turn, brings an 
expensive computational cost, especially for 3-D 

topology optimization.  
The objective of this study is to develop a simple and 

efficient method for 3-D topology optimization based on 
the SIMP method. Elements are connected by each node, 
and if the material densities are re-discretized from 
elements to nodes, a more uniform density distribution 
can be obtained. In this paper, discretized nodal densities 
were used to replace the element densities in order to 
obtain more uniform topology representation. The 
optimization procedure is established as following steps: 
First, the 3-D design domain is discretized by eight-node 
hexahedron elements and each element density is 
calculated by the SIMP algorithm. Next, nodal densities 
are interpolated from the adjacent element densities by 
an element-to-node method (17). A computer code has 
been written to implement this pre-processing. The final 
topology result was visualized by Matlab for the element 
density case and by Tecplot for the nodal density case, 
respectively. 

2. 3-D Topology Optimization Algorithm 

2.1 SIMP algorithm 
The design domain is discretized into a fixed grid of N 

finite elements and the design variables are constituted 
by the elements densities. The objective is to find an 
optimal material distribution subjected to some existent 
constraints. The minimization of a compliance function 
can be expressed as (18): 
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where ( )c ρ  is the objective function to be minimized 

and  and  are a global displacement and a global 
stiffness matrix, respectively.  is a global force vector, 

 is an original element stiffness matrix,  and  

are the element displacement vector and element 
stiffness matrix, respectively, 
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ρ  is the vector of design 
variables, and eρ  is element densities, minρ  is a lower 

limit of relative element densities but non-zero to avoid 



matrix singularity, respectively.  is the total number 
of elements and  is the penalization power, 

N
p ( )V ρ  

and  are a material volume and a design domain 
volume, 

(0)V
f  is the prescribed volume fraction, and  

is an element volume.  
ev

The optimizer is based on the standard optimality 
criteria method like Bendsoe (19). The Lagrangian 
function of Eq. (1a) can be expressed as: 
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where 0λ  and 1λ  are the global Lagrangian multipliers 
, and 2λ  and 3λ  are Lagrangian multipliers for the 

lower and upper limit constraints. In order to find the 
stationary global point, Eq. (2) must satisfy the Kuhn-
Tucker condition. 

The sensitivity of the objective function can be 
obtained: 
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A heuristic updating scheme (19) for the design 

variables can be formulated as: 
 
If  , minmax( , )e e eC mφρ ρ ρ≤ −
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e
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If                            min(1, )e e eCφρ ρ≥ +m
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where  is a positive move limit, m φ  is a numerical 
damping coefficient equals to 0.5 typically.  and m φ  

can be varied from 0 to 1, and the purpose for 
introducing these two variables is to stabilize the 
iteration.   

The stiffness matrix of the eight-node hexahedron 
element is given by 
 

[ ] [ ] [ ][ ]TK B D B dxdydz= ∫ ∫ ∫  
1 1 1

-1 -1 -1
[ ] [ ][ ][ ]TB D B J d d dξ η ζ= ∫ ∫ ∫              (5) 

    
where,  is the strain-displacement matrix and  is 
the shape function of the eight-node hexahedron element. 

B N

 
2.2 Interpolation method 
 
The nodal densities are interpolated from the adjacent 

element densities. It must be emphasized that in this 
paper the design variables are element densities different 
from the CAMD (continuous approximation of material 
distribution) method (20) which used the nodal design 
variables. The resulting element densities are replaced by 
the relative nodal densities with an interpolation function. 
The element-based SIMP method is used first to obtain 
the element densities distribution, and the node-based 
interpolation method is used later for getting the node 
densities distribution, so this case belongs to the element-
to-node method. 

 The location relationship between the nodes and the 
elements is shown in Fig.1.  

 

 
 
Fig.1 Illustration of location relationship between nodes 
and elements 
 

All nodes in the design domain can be divided into 
four categories: (1) corner-node; (2) line-node; (3) 
surface-node; (4) body-node, which have the different 
number of adjacent elements. The node densities can be 
calculated as following (17): 
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where nρ  is the node density, eρ is the element density 

update from equation (1a),  is the element volume, 

and  is the number of adjacent elements, 
respectively. To simplify the Matlab code, here we 
assume that all elements have the same size, which is 

ev

nu



very common in topology optimization by density 
distribution. 
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eCorner node case: 1nρ ρ=                    (7a) 

Line node case: 1 2
1 (
2n e )eρ ρ ρ= +               (7b) 

Surface node: 1 2 3 4
1 ( )
4n e e e eρ ρ ρ ρ ρ= + + +       (7c) 

Body node case: 1 2 8
1 ( ...
8n e e )eρ ρ ρ ρ= + + +      (7d) 

 
2.3 Matlab implementation 
 

A computer code using Matlab has been developed to 
implement all above process. All implementations are 
shown in following steps: 

 
Step 1: Design domain initialization 

Define the design domain as a 3-D matrix. The size of 
matrix is X×Y×Z. Consider the matrix elements to be the 
element density eρ . 

Notice that volume constraint 0
1
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and , so the element densities initialization 

values were defined with

0
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f in the code. 

 
Step 2: Calculate the FE stiffness matrix K. 
Step 3: Calculate the displacement vector U. The 
supporting conditions and boundary conditions are 
defined in this part. 
Step 4: Solve the objective function and sensitivity by a 
loop: 
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Step 5: Sensitivity analysis by the mesh-independency 
filter by (4a), to ensure the existence of solution. 

 
Step 6: Update the new element densities 1eρ +  by the 

optimality criteria algorithm. 
 

Step 7: Check the convergence of the result, If converges, 
go to next step. If not, return to step 4. 

Convergence judgment method:  
The change of the design variables (i.e. element 
densities): 1e eρ ρ+ − < 0.05, convergence. Otherwise, un-

convergence. The value 0.05 is prescribed and can be 
changed. 
 
Step 8: Replace the element densities with the nodal 
densities by Eq. (6) and generate a Tecplot input-file. 
Fig.2 shows an example of the input-file. 
 

 
 
Fig. 2 Tecplot input-file fashion including: title, 

variables and data (partly). 

3. Numerical Examples 

The objective of topology optimization is to find the 
best material distribution, consequently establish a good 
foundation for the future shape optimization. In this 
section, two 3-D structural numerical examples are 
demonstrated in order to verify the efficiency of this 
method. 

 

3.1 3-D brick structure 
 

The design domain is shown in Fig. 3(a). A mesh of 
20×10×10 elements is employed. The structure is fixed 
at the left surface of the domain and a vertical load is 
applied at the center of the right surface. Young’s 
modulus, E = 1 and Poisson’s ratio,  = 0.3. ν

Figs. 3(b, c) show the topology optimization results by 
element and nodal density distributions, respectively. It is 
obvious that the new method provides a clear boundary 
than the previous method and can avoid the phenomenon 
of the virtual-connection in the low-density domain. 
 



 

 
                   (a) 
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(b) 

 
 (c) 

 
Fig. 3 (a) design domain for a 3-D brick, (b) topology 
result by element density distribution and the virtual-
connect phenomenon, (c) topology result by node density 
distribution. 
 

3.2 3-D bridge structure 
 

In this section, the multiple-load case in 3-D topology 
optimization is shown. The design domain considered 
with corresponding applied distributed loads and 
boundary conditions is shown in Fig. 4(a). A mesh of 
30 10 10 elements is employed and the material 
properties are the same as the previous model. The 
optimal results are shown in Figs. 3(b, c), respectively. 
The topology material distribution of the case 2 is close 
to the realistic model obviously. 

× ×

 

 
 

(a) 
 

 

 
                     (b) 
 

 
                   (c) 
Fig. 4 (a) design domain for a 3-D bridge, (b) element 
density distribution and the low-density domain, (c) node 
density distribution 

4. Conclusions 

An efficient 3-D topology optimization method was 
developed based on the SIMP and the nodal density 
distribution of 3-D finite elements. The optimization 
procedure consists of major 2 steps: First, the 3-D design 
domain is discretized by eight-node hexahedron elements 
and each element density is calculated by the SIMP 
algorithm. Next, nodal densities are interpolated from the 
adjacent element densities by an element-to-node method 
A computer code has been developed to implement the 
algorithm. The final topology result was visualized by 
Tecplot based on the nodal density. When compared with 
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the traditional SIMP algorithm, the present method could 
obtain much smoother and clearer topology 
representation.  
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