• Title/Summary/Keyword: Measuring dynamic properties

Search Result 97, Processing Time 0.024 seconds

Effect of Lecithin on Dermal Safety of Nanoemulsion Prepared from Hydrogenated Lecithin and Silicone Oil

  • Bae, Duck-Hwan;Shin, Jae-Sup;Shin, Gwi-Su;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.821-824
    • /
    • 2009
  • In this study, a hydrogenated lecithin-containing nanoemulsion was prepared from hydrogenated lecithin and silicone oil. Tween-60 and liquid paraffin, widely known emulsifiers, were used as standard substances, and high shear was produced by utilizing a high shear homogenizer and microfluidizer. The properties of the nanoemulsion prepared with hydrogenated lecithin were evaluated by measuring interfacial tension, dynamic interfacial tension, droplet size, zeta-potential, friction force, skin surface hygrometery, and dermal safety. The interfacial tension of lecinol S10/silicone oil was lower than that of lecinol S10/liquid paraffin. The nanoemulsion prepared from hydrogenated lecithin shows lower zeta-potential, skin surface hygrometery, and friction force compared with a general emulsion. The silicone nanoemulsion prepared from hydrogenated lecithin showed a zero value in the patch test and thus exhibits high dermal safety.

Estimation of the Measurement Uncertainty in Measuring the Vibration Transmissibility of Anti-vibration Gloves (방진장갑 진동 전달률 측정에서의 측정불확도 추정)

  • Hong, Seok-In;Jang, Han-Ki;Choi, Seok-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.251-254
    • /
    • 2005
  • In this study vibration transmissibilities of the selected anti-vibration gloves were measured, and the measurement uncertainty was estimated. Since human factors such as palm size, gripping condition and dynamic properties of the hand-arm effect the measurement a lot, it is necessary to know ow much the uncertainty is. This study takes the measurement procedure suggested in ISO 10819. Three subjects Joined at each test and each anti-vibration glove was tested twice per a subject. Average and standard deviation of vibration transmissibility were calculated and uncertainty of them were estimated at 95% confidence level.

  • PDF

Damage detection of multistory shear buildings using partial modal data

  • Shah, Ankur;Vesmawala, Gaurang;Meruane, V.
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • This study implements a hybrid Genetic Algorithm to detect, locate, and quantify structural damage for multistory shear buildings using partial modal data. Measuring modal responses at multiple locations on a structure is both challenging and expensive in practice. The proposed method's objective function is based on the building's dynamic properties and can also be employed with partial modal information. This method includes initial residuals between the numerical and experimental model and a damage penalization term to avoid false damages. To test the proposed method, a numerical example of a ten-story shear building with noisy and partial modal information was explored. The obtained results were in agreement with the previously published research. The proposed method's performance was also verified using experimental modal data of an 8-DOF spring-mass system and a five-story shear building. The predicted results for numerical and experimental examples indicated that the proposed method is reliable in identifying the damage for multistory shear buildings.

Comparison on Accuracy of Static and Dynamic Contact Angle Methods for Evaluating Interfacial Properties of Composites (복합재료의 계면특성 평가를 위한 접촉각 방법의 정확도 비교)

  • Kwon, Dong-Jun;Kim, Jong-Hyun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.87-93
    • /
    • 2022
  • To analyze the interfacial property between the fiber and the matrix, work of adhesion was used generally that was calculated by surface energies. In this paper, it was determined what types of contact angle measurement methods were more accurate between static and dynamic contact angle measurements. 4 types of glass fiber and epoxy resin were used each other to measure the contact angle. The contact angle was measured using two types, static and dynamic contact angle methods, and work of adhesion, Wa was calculated to compare interfacial properties. The interfacial property was evaluated using microdroplet pull-out test. Generally, the interfacial property was proportional to work of adhesion. In the case of static contact angle, however, work of adhesion was not consistent with interfacial property. It is because that dynamic contact angle measurement comparing to static contact angle could delete the error due to microdroplet size to minimize the surface area as well as the meniscus measuring error.

Evaluation of Engineering Properties of CLSM using Weathered Granite Soils (화강풍화토를 이용한 CLSM의 공학적 특성평가)

  • Lim, Yu-Jin;Seo, Chang-Beom
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.19-26
    • /
    • 2009
  • In this study, flowable backfill made with weathered granite soil is tested to provide basic engineering properties that can be used as design input to overcome settlement problems in road pavement due to low stiffness of backfill which is generated by porosity of the soil. For design purpose, a proper mixing ratio is developed first. Then several test methods including FF/RC, PMT and LDWT including axial compression test are adapted for checking stiffness and measuring axial strength of the material separately that can be used for design values.

Measuring of Loss factor and Young's modulus of Plastics with Temperature Variation (온도변화에 따른 플라스틱의 손실계수와 Young 률의 측정)

  • Shin Su Hyun;Jung Sung Soo;Lee Yong Bong;Lee Doo Hee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.321-322
    • /
    • 2004
  • It is well known that the loss factor and Young's modulus are fundamental mechanical properties of materials. In this study. the dynamic characteristics of plastics are evaluated by using two different standard test methods which are ASTM E 756 and ISO 6721. Polycarbonate and acrylonitrile butadiene styrene were used as test specimens. In order to evaluate vibration of damping properties with temperature, we measured loss factor and Young's modulus of the specimens the temperature range between $-10^{\circ}C$ and $60^{\circ}C$. The Young's modulus for polycarbonate decreased significantly as increasing temperature, while the loss factor increased. However, the Young's modulus and loss factor of acrylonitrile butadiene styrene are varied somewhat with temperature.

  • PDF

Determination of Specimen Geomery for Estimation of the Complex Modulus of Viscoelas the Materials by the Lumped Mass Model (집중질량 모형화에 의한 점탄성재료의 복소 탄성계수 산출을 위한 시편 크기 의 절정)

  • Kang, Gi-Ho;Shim, Song;Kim, Gwang-Jun
    • Journal of KSNVE
    • /
    • v.1 no.2
    • /
    • pp.121-128
    • /
    • 1991
  • In order to use viscoelastic materials efficiently for noise and vibration control, or th qualify newly developed materials, knowledge of the Young' s modulus and loss factor is essemtial. These material properties, the so-called complex Young' s modulus, are frequently treated as dynamic charicteristics because of their dependence upon the frequency. Many techniques have been developed and verified for measuring complex Young' s modulus of viscoelastic materials. Among them, the impedance method is preferable in order to obtain the frequency information in detail. In this method, a cylindrical or prismatic specimen is excited into longitudinal harmonic vibration at one end, the other being fixed, and the resulting force is measured at the driving or fixed end. The amplitude ratio of the two signals and phase angle between them are then used to compute the material properties using various mathematical models. In this paper, the impedance method is investigated theoretically and experimentally. A way to determine the specimen geometry which is most appropriate for the identification of complex Young' s modulus using the lumped mass model is presented and discussed. Then experimental results supporting the theoretical predictions are presented.

  • PDF

An investigation of characteristics of Au plating for telecommunication components (통신기자재용 금도금 특성 분석 연구)

  • 한전건;강태만
    • Journal of Surface Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.309-317
    • /
    • 1992
  • Evaluation of electroplated gold has been carried out to obtain the data base for electrical, mechanical and environmental properties for telecommunication component applications. Gold plating was performed to a various thickness of $0.1\mu\textrm{m}$ to 1.$25\mu\textrm{m}$ after Ni plating of $3\mu\textrm{m}$ on C52100 bronze. Electrical properties were evaluated by measuring contact resistance using 4-wire method under static contact and dynamic contact during wear. Reciprocating wear test was performed to study the wear behavior as well as failure of gold contacts. Environmental characteristics were evaluated by using salt spray testing and SO2 test. Hardness of soft gold film was measured to be 53KHN under 5g load. Friction coefficient was initially obtained to be 0.15 and 0.25 under 100g and 200g loads respectively, and then raised up to 0.8 with increasing reciprocating wear cycles. Static contact resistance was 2 to 3m$\Omega$ regardless of gold film thickness while drastic changes of contact resistance were occured upon stripping of the gold film during wear. The lifetime of contact wear showing stable contact resistance increased up to 6 times for $1\mu\textrm{m}$ thickness compared to that of$ 0.1\mu\textrm{m}$ thickness under 100g load. All gold plating appeared to be stable under salt atmosphere while only the gold plating over 1$\mu\textrm{m}$ was stable under SO2 atmosphere.

  • PDF

Development of Multi Layered Elastic Pavement Analysis Program Package Considering Temperature Nonlinearty of Asphalt Layer on GUI Environment (아스팔트층 온도 비선형성을 고려한 사용자 편의환경의 다층탄성 프로그램 개발)

  • Choi, Jun-Seong;Seo, Joo-Won;Park, Keun-Bo;Kim, Soo-Il
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.91-101
    • /
    • 2008
  • A multi layered elastic analysis program, IDYSPAP, was developed. The objective of this study was to develop the IDYSPAP program on Graphic User Interface environment for field engineers using Visual Basic, which was considered span of multi-wheels and maximum 4 axles using superposition of linear elastic theorem. It is suggested that this study considers algorithm with dynamic properties of asphalt layer on various temperature and non-linear properties of subbase and subgrade on stress non-linearity for asphalt pavement structure. This Program was modified to divide asphalt layer automatically according to layer division concept. The developed program was verified with initial measuring data in test road sections of KEC (Korea Expressway Co.) using laboratory test results.

  • PDF

Fabrication and Characterization of Superhydrophobic Glass Surfaces Using Silicon Micro-mold and Thermal-reflow Process (실리콘 마이크로 몰드와 유리의 열-재흐름 현상을 이용한 초소수성 유리 표면 제작 및 젖음 특성 평가)

  • Kim, Seung-Jun;Kong, Jeong-Ho;Lee, Dongyun;Kim, Jong-Man
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.591-597
    • /
    • 2012
  • This paper presents regularly micro-textured glass surfaces ensuring the superhydrophobic properties in the Cassie-Baxter regime. The proposed surfaces were fabricated simply and efficiently by filling the glass material into a silicon micro-mold with periodic micro-cavities based on a thermal-reflow process, resulting in a successful demonstration of the textured glass surface with periodically-arrayed micro-pillar structures. The static and dynamic wetting properties of the micro-textured glass surfaces were characterized by measuring the static contact angle (SCA) and contact angle hysteresis (CAH), respectively. In addition, the surface wettability was estimated theoretically based on Wenzel and Cassie-Baxter wetting theories, and compared with the experimental ones. Through the experimental and theoretical observations, it was clearly confirmed that the proposed micro-textured glass surfaces showed the slippery superhydrophobic behaviors in the Cassie-Baxter wetting mode.