• 제목/요약/키워드: Measurement division

검색결과 2,766건 처리시간 0.031초

와전류(eddy-current)방법에 의한 비접촉 전기비저항 측정기술 개발 (The measurement for contactless eddy-current conductivity on Si wafer)

  • 박진습;유권상;류제천;유광민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.991-993
    • /
    • 1999
  • The method of measurement for contactless eddy-current conductivity using magnetic dipole field theory was suggested by M.C Chen[1], which calculate the eddy-current caused by exciting coil with Faraday's induction law. In this work, we have developed the apparatus for contactless measurement of conductivity or resistivity with the dipole field theory. The resistivity can be measured from several to a dozen $m{\Omega}{\cdot}cm$ range within maximum 30% error. At the high resistivity range above $100{\Omega}{\cdot}cm$, the standard deviation of measurement was very large as the induced voltage of sensing coil is small so it was difficult to measure the value precisely.

  • PDF

RF and Microwave Power Standards from 10 MHz to 40 GHz over Decades

  • Kang, Tae-Weon;Kwon, Jae-Yong;Park, Jeong-Il;Kang, No-Weon
    • Journal of electromagnetic engineering and science
    • /
    • 제18권2호
    • /
    • pp.88-93
    • /
    • 2018
  • Radio frequency (RF) and microwave power is one of the key quantities in the framework of electromagnetic measurement standards. Therefore, the stability of the power standard is essential to users' reliable measurements in various areas. Coaxial and waveguide thermistor mounts are used as transfer standards of RF and microwave power. Over decades, the effective efficiencies of thermistor mounts have been measured using coaxial and waveguide microcalorimeters in the frequency range of 10 MHz-40 GHz. The measurement uncertainty of the effective efficiency is evaluated. Results show that the power standards have been well maintained within the measurement uncertainty.

예비초등교사들이 분수 포함제의 몫과 나머지 구하기에서 범하는 오류에 대한 분석 (A study on errors committed by Korean prospective elementary teachers in finding and interpreting quotient and remainder within measurement division of fraction)

  • 박교식;권석일
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제14권3호
    • /
    • pp.317-328
    • /
    • 2011
  • 본 연구에서는 예비초등교사 65명을 대상으로 그 결과가 이산량과 나머지로 표현되는 포함제 맥락의 분수 나눗셈 문장제를 풀도록 하여 그 풀이과정을 수집하고, 65명 중 임의로 선발된 5명과의 심층 면담을 실시하여 이를 분석하였다. 분석 결과 예비초등교사 중 상당수는 분수 나눗셈의 계산 결과를 해석하는 과정에서 자연수를 제외한 진분수 부분 또는 1보다 작은 소수 부분의 의미를 정확하게 이해하고 있지 못했다. 포함제 맥락의 분수 나눗셈을 포함제 맥락의 자연수 나눗셈으로 바꾸어 계산해 버리는 오류를 범하는 경우도 있었다. 이러한 연구 결과는 예비초등교사들에게 문장제를 만드는 과정 뿐 아니라 문장제를 주어진 맥락에 맞게 해결하고 그 계산 결과를 주의 깊게 해석하는 경험을 포함하는 치밀한 교육프로그램을 제공할 필요가 있음을 시사한다.

유추를 통한 분수 연산에 관한 연구 (A Study on Operations with Fractions Through Analogy)

  • 김용태;신봉숙;최대욱;이순희
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제19권4호
    • /
    • pp.715-731
    • /
    • 2005
  • There are five contexts of division algorithm of fractions such as measurement division, determination of a unit rate, reduction of the quantities in the same measure, division as the inverse of multiplication and analogy with multiplication algorithm of fractions. The division algorithm, however, should be taught by 'dividing by using reciprocals' via 'measurement division' because dividing a fraction by a fraction results in 'multiplying the dividend by the reciprocal of the divisor'. If a fraction is divided by a large fraction, then we can teach the division algorithm of fractions by analogy with 'dividing by using reciprocals'. To achieve the teaching-learning methods above in elementary school, it is essential for children to use the maniplatives. As Piaget has suggested, Cuisenaire color rods is the most efficient maniplative for teaching fractions. The instruction, therefore, of division algorithm of fractions should be focused on 'dividing by using reciprocals' via 'measurement division' using Cuisenaire color rods through analogy if necessary.

  • PDF

Utilizing Optical Phantoms for Biomedical-optics Technology: Recent Advances and Challenges

  • Ik Hwan Kwon;Hoon-Sup Kim;Do Yeon Kim;Hyun-Ji Lee;Sang-Won Lee
    • Current Optics and Photonics
    • /
    • 제8권4호
    • /
    • pp.327-344
    • /
    • 2024
  • Optical phantoms are essential in optical imaging and measurement instruments for performance evaluation, calibration, and quality control. They enable precise measurement of image resolution, accuracy, sensitivity, and contrast, which are crucial for both research and clinical diagnostics. This paper reviews the recent advancements and challenges in phantoms for optical coherence tomography, photoacoustic imaging, digital holographic microscopy, optical diffraction tomography, and oximetry tools. We explore the fundamental principles of each technology, the key factors in phantom development, and the evaluation criteria. Additionally, we discuss the application of phantoms used for enhancing optical-image quality. This investigation includes the development of realistic biological and clinical tissue-mimicking phantoms, emphasizing their role in improving the accuracy and reliability of optical imaging and measurement instruments in biomedical and clinical research.

The Study of Improvement of Measurement Precision on Bulk Density, Soil Hardness and Air Permeability in Upland Soils

  • Ok, Jung-hun;Han, Kyung-hwa;Cho, Hee-rae;Zhang, Yong-seon;Seo, Young-ho;Jung, Kang-ho;Lee, Hyub-sung;Kim, Gi-sun
    • 한국토양비료학회지
    • /
    • 제50권5호
    • /
    • pp.482-488
    • /
    • 2017
  • The measurement based on reliable standard operating procedures (SOPs) is important for consistent information. The objective of this study is to investigate reliable SOPs of soil physical methods, including core method for bulk density, Yamanaka hardness, and air permeameter method for air permeability. The coefficients of variation in bulk density (core method), Yamanaka hardness, and air permeability were ranged of 1~6%, 8~13%, and 10~84%, respectively. The variation in situ measurement such as bulk density, hardness, and air permeability due to spatial variability at measuring site was larger due to the number of replicates, organic matter content, and soil texture. Nevertheless, air permeability had different values as different number of replicates, and thus, it is thought that more replicates can result in higher reliability. It suggested that investigation of soil physical properties for the target sites should required to consider about soil texture, organic matter content, and number of replications before measurement. In conclusion, core sampling for bulk density measurement in upland soil recommended to perform in 3 repetitions with 2 inch core, and 3 inch core sampling for higher organic matter content.

대규모 건물의 기밀성능 측정기준 수립에 관한 연구 (Study on the Establishment of Large Building Airtightness Measurement Standards)

  • 이동석;지경환;조재훈
    • 한국태양에너지학회 논문집
    • /
    • 제34권1호
    • /
    • pp.117-124
    • /
    • 2014
  • Airtightness standards using fan pressurization method are normally used for measuring small buildings, detached houses, and apartment units. And, it is easy to conduct airtightness measurement through this fan pressurization method. However, it can be difficult to achieve accurate measurement results for the large buildings as the height and volume of the buildings have been increased. In this paper, we studied the principle of airtightness method by fan pressurization. And, we reviewed the measurement process described in ISO 9972, EN 13829, ASTM E779, ATTMA TS 1, CAN/CGSB 149.15, and JIS A 2201. Then, we categorized the methods' items according by air flow rate (Q) and pressure difference(${\Delta}P$). As a result, we made a comparison analysis on the measurement methods appeared in each standards. And, we achieved 5 test conditions about air flow rate and pressure difference to state requirements for large buildings airtightness measurement.

Vision-based Automatic System for Non-contact Measurement of Morphometric Characteristics of Flatfish

  • Jeong, Seong-Jae;Yang, Yong-Su;Lee, Kyounghoon;Kang, Jun-Gu;Lee, Dong-Gil
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1194-1201
    • /
    • 2013
  • This paper introduces a vision-based automatic system (VAMS) for non-contact measurement of morphometric characteristics of flatfish, such as total length (TL), body width (BW), height (H), and weight (W). The H and W are simply measured by a laser displacement and a load cell, respectively. The TL and BW are measured by a proposed morphological image processing algorithm. The proposed algorithm cans measurement, when the tail of flatfish is deformed, and when it is randomly oriented. In the experiment, the average and maximum measurement errors were recorded, and standard deviations and coefficients of variation (CVs) for the measurements were calculated. From those results, when flatfish the TL measurements had an average of 266.844 mm, a standard deviation of 0.351 mm, a CV of 0.131%, and a maximum error of 0.87 mm with straightened flatfish ($TL_A$ : 267 mm, $BW_A$ : 141 mm), and when flatfish of different sizes were measured, the errors in the TL and BW measurements were both about 0.2 %. Using a single conveyor, the VAMS can process up to 900 fishes per hour. Moreover, it can measure morphometric characteristics of flatfish with a TL of up to 500 mm.

분수나눗셈을 해결하기 위한 학생들의 자기-생성 알고리듬 구성에 관한 연구 (Construction of a Student-Generated Algorithm for Fraction Measurement Division)

  • 신재홍
    • 대한수학교육학회지:학교수학
    • /
    • 제12권3호
    • /
    • pp.439-454
    • /
    • 2010
  • 본 연구는 두 명의 중학교 2학년 학생들이 어떻게 단위 분할 도식의 수정, 변경을 통하여 분수나눗셈 상황에서 그들 자신만의 자가-생성 알고리듬을 만들어 나가는지 보여주고 있다. 교육실험이 연구방법으로 사용되었고, 일년간 행해진 교육실험 중 일부분의 자료가 본 연구를 위해 분석되었다. 두 명의 참여 학생들은 기준단위와 제수사이의 상호 관계 구성과 활용으로 분수나눗셈을 위해 전통적으로 학습되어 왔던 '뒤집어서 곱하기'와 같은 역할을 하는 그들 자신의 자기-생성 알고리듬을 구성할 수 있었다. 본 연구결과는 또한 학생들이 만들어 낸 알고리듬을 이해할 수 있는 것이 훌륭한 수학 교사로서의 질을 결정하는 하나의 요소로 고려 되어야 함을 보여주고 있다.

  • PDF

Analysis of pipe thickness reduction according to pH in FAC facility with In situ ultrasonic measurement real time monitoring

  • Oh, Se-Beom;Kim, Jongbeom;Lee, Jong-Yeon;Kim, Dong-Jin;Kim, Kyung-Mo
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.186-192
    • /
    • 2022
  • Flow accelerated corrosion (FAC) is a type of pipe corrosion in which the pipe thickness decreases depending on the fluid flow conditions. In nuclear power plants, FAC mainly occurs in the carbon steel pipes of a secondary system. However, because the temperature of a secondary system pipe is over 150 ℃, in situ monitoring using a conventional ultrasonic non-destructive testing method is difficult. In our previous study, we developed a waveguide ultrasonic thickness measurement system. In this study, we applied a waveguide ultrasonic thickness measurement system to monitor the thinning of the pipe according to the change in pH. The Korea Atomic Energy Research Institute installed FAC-proof facilities, enabling the monitoring of internal fluid flow conditions, which were fixed for ~1000 h to analyze the effect of the pH. The measurement system operated without failure for ~3000 h and the pipe thickness was found to be reduced by ~10% at pH 9 compared to that at pH 7. The thickness of the pipe was measured using a microscope after the experiment, and the reliability of the system was confirmed with less than 1% error. This technology is expected to also be applicable to the thickness-reduction monitoring of other high-temperature materials.