DOI QR코드

DOI QR Code

Utilizing Optical Phantoms for Biomedical-optics Technology: Recent Advances and Challenges

  • Ik Hwan Kwon (Division of Biomedical Metrology, Korea Research Institute of Standards and Science) ;
  • Hoon-Sup Kim (Division of Biomedical Metrology, Korea Research Institute of Standards and Science) ;
  • Do Yeon Kim (Division of Biomedical Metrology, Korea Research Institute of Standards and Science) ;
  • Hyun-Ji Lee (Division of Biomedical Metrology, Korea Research Institute of Standards and Science) ;
  • Sang-Won Lee (Division of Biomedical Metrology, Korea Research Institute of Standards and Science)
  • Received : 2024.06.24
  • Accepted : 2024.07.11
  • Published : 2024.08.25

Abstract

Optical phantoms are essential in optical imaging and measurement instruments for performance evaluation, calibration, and quality control. They enable precise measurement of image resolution, accuracy, sensitivity, and contrast, which are crucial for both research and clinical diagnostics. This paper reviews the recent advancements and challenges in phantoms for optical coherence tomography, photoacoustic imaging, digital holographic microscopy, optical diffraction tomography, and oximetry tools. We explore the fundamental principles of each technology, the key factors in phantom development, and the evaluation criteria. Additionally, we discuss the application of phantoms used for enhancing optical-image quality. This investigation includes the development of realistic biological and clinical tissue-mimicking phantoms, emphasizing their role in improving the accuracy and reliability of optical imaging and measurement instruments in biomedical and clinical research.

Keywords

Acknowledgement

In part by the Korea Medical Device Development Fund grants funded by the Korean government (Ministry of Science and ICT, Ministry of Trade, Industry and Energy, Ministry of Health & Welfare, Ministry of Food and Drug Safety) (Project No. KMDF_PR_20200901_0024 and KMDF_PR_20200901_0026); In part by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIT) (GTL24021-500); Development of Measurement Standards and Technology for Biomaterials and Medical Convergence funded by the Korea Research Institute of Standards and Science (Grant no. KRISS-GP2024-0007).

References

  1. A. Fouad, T. J. Pfefer, C.-W. Chen, W. Gong, A. Agrawal, P. H. Tomlines, P. D. Woolliams, R. A. Drezek, and Y. Chen, "Variations in optical coherence tomography resolution and uniformity: A multi-system performance comparison," Biomed. Opt. Express 5, 2066-2081 (2014).  https://doi.org/10.1364/BOE.5.002066
  2. H.-J. Lee and S.-W. Lee, "Partial spectrum detection and super-Gaussian window function for ultrahigh-resolution spectral-domain optical coherence tomography with a linear-k spectrometer," Curr. Opt. Photonics 7, 73-82 (2023).  https://doi.org/10.3807/COPP.2023.7.1.73
  3. A. Agrawal, C.-W. Chen, J. Baxi, Y. Chen, and T. J. Pfefer, "Multilayer thin-film phantoms for axial contrast transfer function measurement in optical coherence tomography," Biomed. Opt. Express 4, 1166-1175 (2013).  https://doi.org/10.1364/BOE.4.001166
  4. M. M. Amaral, D. M. Zezell, A. F. G. Monte, A. C. B. de Cara, J. C. R. Araujo, A. Antunes, and A. Z. Freitas, "General model for depth-resolved estimation of the optical attenuation coefficients in optical coherence tomography," J. Biophotonics 12, e201800402 (2019). 
  5. J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, and Z. Ma, "Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination," J. Biomed. Opt. 24, 035002 (2019). 
  6. H.-J. Lee, N. M. Sauiudin, I. Doh, and S.-W. Lee, "Full layer retinal phantom mimicking three retinal vascular networks and curvature," Proc. SPIE PC12833, PC128330C (2024). 
  7. F. Ratto, L. Cavigli, C. Borri, S. Centi, G. Magni, M. Mazzoni, and R. Pini, "Hybrid organosilicon/polyol phantom for photoacoustic imaging," Biomed. Opt. Express 10, 3719-3730 (2019).  https://doi.org/10.1364/BOE.10.003719
  8. M. Dantuma, R. van Dommelen, and S. Manohar, "Semi-anthropomorphic photoacoustic breast phantom," Biomed. Opt. Express 10, 5921-5939 (2019).  https://doi.org/10.1364/BOE.10.005921
  9. A. Hariri, J. Palma-Chavez, K. A. Wear, T. J. Pfefer, J. V. Jokerst, and W. C. Vogt, "Polyacrylamide hydrogel phantoms for performance evaluation of multispectral photoacoustic imaging systems," Photoacoustics 22, 100245 (2021). 
  10. W. C. Vogt, X. Zhou, R. Andriani, K. A. Wear, T. J. Pfefer, and B. S. Garra, "Photoacoustic oximetry imaging performance evaluation using dynamic blood flow phantoms with tunable oxygen saturation," Biomed. Opt. Express 10, 449-464 (2019).  https://doi.org/10.1364/BOE.10.000449
  11. L. Leggio, S. Gawali, D. Gallego, S. Rodriguez, M. Sanchez, G. Carpintero, and H. Lamela, "Optoacoustic response of gold nanorods in soft phantoms using high-power diode laser assemblies at 870 and 905 nm," Biomed. Opt. Express 8, 1430-1440 (2017).  https://doi.org/10.1364/BOE.8.001430
  12. J. Ki, H. Lee, T. Lee, S.-W. Lee, J.-S. Wi, and H.-K. Na, "Visualization materials using silicon-based optical nanodisks (ViSiON) for enhanced NIR imaging in ophthalmology," Adv. Healthc. Mater. 13, 2303713 (2024). 
  13. M. Izzetoglu, K. Pourrezaei, J. Du, and P. A. Shewokis, "Evaluation of cerebral tissue oximeters using multilayered dynamic head models," IEEE Trans. Instrum. Meas. 70, 1003112 (2021). 
  14. Z. Kovacsova, G. Bale, S. Mitra, F. Lange, and I. Tachtsidis, "Absolute quantification of cerebral tissue oxygen saturation with multidistance broadband NIRS in newborn brain," Biomed. Opt. Express 12, 907-925 (2021).  https://doi.org/10.1364/BOE.412088
  15. C. Akitegetse, P. Landry, J. Robidoux, N. Lapointe, D. Brouard, and D. Sauvageau, "Monte-Carlo simulation and tissue-phantom model for validation of ocular oximetry," Biomed. Opt. Express 13, 2929-2946 (2022).  https://doi.org/10.1364/BOE.458079
  16. L. Wang, J. M. Cochran, T. Ko, W. B. Baker, K. Abramson, L. He, D. R. Busch, V. Kavuri, R. L. Linn, S. Parry, A. G. Yodh, and N. Schwartz, "Non-invasive monitoring of blood oxygenation in human placentas via concurrent diffuse optical spectroscopy and ultrasound imaging," Nat. Biomed. Eng. 6, 1017-1030 (2022).  https://doi.org/10.1038/s41551-022-00913-2
  17. M. Damodaran, A. Amelink, and J. F. De Boer, "Optimal wavelengths for subdiffuse scanning laser oximetry of the human retina," J. Biomed. Opt. 23, 086003 (2018). 
  18. S. Kleiser, N. N. Asseri, B. A. Ndresen, G. G. Reisen, and M. W. Olf, "Comparison of tissue oximeters on a liquid phantom with adjustable optical properties," Biomed. Opt. Express 7, 2973-2992 (2016).  https://doi.org/10.1364/BOE.7.002973
  19. K. Rackebrandt and H. Gehring, "Calibration and evaluation of a continuous wave multi-distance NIRS system in simulated desaturation investigations," Biomed. Phys. Eng. Express 2, 035017 (2016). 
  20. M. Fonseca, B. Zeqiri, P. Beard, and B. Cox, "Characterisation of a PVCP-based tissue-mimicking phantom for quantitative photoacoustic imaging," Proc. SPIE 9539, 953911 (2015). 
  21. S. E. Bohndiek, S. Bodapati, D. V. De Sompel, S.-R. Kothapalli, and S. S. Gambhir, "Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments," PLoS One 8, e75533 (2013). 
  22. J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, "Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging," Biomed. Opt. Express 2, 3193-3206 (2011).  https://doi.org/10.1364/BOE.2.003193
  23. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, "Optical phantoms of varying geometry based on thin building blocks with controlled optical properties," J. Biomed. Opt. 15, 025001 (2010). 
  24. P. C. Beard, "Photoacoustic imaging of blood vessel equivalent phantoms," Proc. SPIE 4618, 54-62 (2002).  https://doi.org/10.1117/12.469848
  25. S. O. Isikman, A. Greenbaum, W. Luo, A. F. Coskun, and A. Ozcan, "Giga-pixel lensfree holographic microscopy and tomography using color image sensors," PLoS One 7, e45044 (2012). 
  26. E. Mudry, P. C. Chaumet, K. Belkebir, G. Maire, and A. Sentenac, "Mirror-assisted tomographic diffractive microscopy with isotropic resolution," Opt. Lett. 35, 1857-1859 (2010).  https://doi.org/10.1364/OL.35.001857
  27. J. Sun, B. Yang, N. Koukouraki, J. Guck, and J. W. Czarske, "AI-driven projection tomography with multicore fibre-optic cell rotation," Nat. Commun. 15, 147 (2024). 
  28. B. Bazow, T. Phan, C. B. Raub, and G. Nehmetallah, "Three-dimensional refractive index estimation based on deep-inverse non-interferometric optical diffraction tomography (ODT-deep)," Opt. Express 31, 28382-28399 (2023).  https://doi.org/10.1364/OE.491707
  29. E. Wdowiak, M. Zeimczonok, J. Martinez-Carranza, and A. Kus, "Phase-assisted multi-material two-photon polymerization for extended refractive index range," Addit. Manuf. 73, 103666 (2023). 
  30. P. Zdankowski, J. Winnik, K. Patorski, P. Goclowski, M. Ziemczonok, M. Jozwik, M. Kujawinska, and M. Trusiak, "Common-path intrinsically achromatic optical diffraction tomography," Biom. Opt. Express 12, 4219-4234 (2021).  https://doi.org/10.1364/BOE.428828
  31. M. Ziemczonok, A. Kus, P. Wasylczyk, and M. Kujawinska, "3D-printed biological cell phantom for testing 3D quantitative phase imaging systems," Sci. Rep. 9, 18872 (2019). 
  32. A. Curatolo, B. F. Kennedy, and D. D. Sampson, "Structured three-dimensional optical phantom for optical coherence tomography," Opt. Express 19, 19480-19485 (2011).  https://doi.org/10.1364/OE.19.019480
  33. A. Curatolo, P. R. T. Munro, D. Lorenser, P. Sreekumar, C. C. Singe, B. F. Kennedy, and D. D. Sampson, "Quantifying the influence of Bessel beams on image quality in optical coherence tomography," Sci. Rep. 6, 23483 (2016). 
  34. A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, "Methods to assess sensitivity of optical coherence tomography systems," Biomed. Opt. Express 8, 902-917 (2017).  https://doi.org/10.1364/BOE.8.000902
  35. N. Huang, Z. Deng, Z. Hu, J. Mei, S. Zhao, X. Wu, Z. Jia, Y. Liu, J. Wang, Q. Ye, and J. Tian, "A spatial resolution evaluation method of endoscopic optical coherence tomography system using the annular phantom," J. Biophotonics 14, e202100035 (2021). 
  36. F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, "Comparative study of shear wave-based elastography techniques in optical coherence tomography," J. Biomed. Opt. 22, 035010 (2017). 
  37. V. Jaedicke, S. Agcaer, F. E. Robles, M. Steinert, D. Jones, S. Goebel, N. C. Gerhardt, H. Welp, and M. R. Hofmann, "Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography," Biomed. Opt. Express 4, 2945-2961 (2013).  https://doi.org/10.1364/BOE.4.002945
  38. S. Chang, J. Handwerker, G. A. Giannico, S. S. Chang, and A. K. Bowden, "Birefringent tissue-mimicking phantom for polarization-sensitive optical coherence tomography imaging," J. Biomed. Opt. 27, 074711 (2022). 
  39. F. Liu, G. Liu, and X. Wang, "High-accurate and robust fingerprint anti-spoofing system using optical coherence tomography," Expert. Syst. Appl. 130, 31-44 (2019).  https://doi.org/10.1016/j.eswa.2019.03.053
  40. B. Vuong, P. Skowron, T.-R. Kiehl, M. Kyan, L. Garzia, C. Sun, M. D. Taylor, and V. X. Yang, "Measuring the optical characteristics of medulloblastoma with optical coherence tomography," Biomed. Opt. Express 6, 1487-1501 (2015).  https://doi.org/10.1364/BOE.6.001487
  41. S. S. Gao, G. Liu, D. Huang, and Y. Jia, "Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system," Opt. Lett. 40, 2305-2308 (2015).  https://doi.org/10.1364/OL.40.002305
  42. H.-J. Lee, N. M. Samiudin, T. Lee, I. Doh, and S.-W. Lee, "Retina phantom for the evaluation of optical coherence tomography angiography based on microfluidic channels," Biomed. Opt. Express 10, 5535-5548 (2019).  https://doi.org/10.1364/BOE.10.005535
  43. J. Palma-Chavez, K. A. Wear, Y. Mantri, J. V. Jokerst, and W. C. Vogt, "Photoacoustic imaging phantoms for assessment of object detectability and boundary buildup artifacts," Photoacoustics 26, 100348 (2022). 
  44. M. K. Kim, "Principles and techniques of digital holographic microscopy," SPIE Rev. 1, 018005 (2010). 
  45. S. Tomioka, S. Nishiyama, N. Miyamoto, D. Kando, and S. Heshmat, "Weighted reconstruction of three-dimensional refractive index in interferometric tomography," Appl. Opt. 56, 6755-6764 (2017).  https://doi.org/10.1364/AO.56.006755
  46. X. Yu, J. Hong, C. Liu, and M. K. Kim, "Review of digital holographic microscopy for three-dimensional profiling and tracking," Opt. Eng. 53, 112306 (2014). 
  47. J. Zhang, J. Di, Y. Li, T. Xi, and J. Zhao, "Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection," Opt. Express 23, 27328-27334 (2015).  https://doi.org/10.1364/OE.23.027328
  48. Y. Kim, S. Park, H.-J. Choi, and S.-W. Min, "Refractive index measurement using self-interference incoherent digital holography," in Proc. 2022 IEEE International Conference on Consumer Electronics-ICCE (Las Vegas, NV, USA, Jan. 7-9, 2022), pp. 1-3. 
  49. C. Sun, Y. Cui, Z. Wang, and Z. Jiang, "Measurement of microfluidic refractive index by digital holographic microscopy," in Laser Applications to Chemical, Security and Environmental Analysis 2018 (Optica Publishing Group, 2018), paper JW4A.29. 
  50. I. H. Kwon, J. Lee, H.-K. Na, T. G. Lee, and S.-W. Lee, "Numerical phase-detection autofocusing method for digital holography reconstruction processing," Appl. Phys. Lett. 124, 093701 (2024). 
  51. P. C. Chaumet, K. Belkebir, and A. Sentenac, "Numerical study of grating-assisted optical diffraction tomography," Phys. Rev. A 76, 013814 (2007). 
  52. Y. Ruan, P. Bon, E. Mudry, G. Maire, P. C. Chaumet, H. Giovannini, K. Belkebir, A. Talneau, B. Wattellier, S. Monneret, and A. Sentenac, "Tomographic diffractive microscopy with a wavefront sensor," Opt. Lett. 37, 1631-1633 (2012).  https://doi.org/10.1364/OL.37.001631
  53. C. Hornberger and H. Wabnitz, "Approaches for calibration and validation of near-infrared optical methods for oxygenation monitoring," Biomed. Tech. (Biomedizinische Technik) 63, 537-546 (2018).  https://doi.org/10.1515/bmt-2017-0116
  54. A. Sudakou, H. Wabnitz, A. Liemert, M. Wolf, and A. Liebert, "Two-layered blood-lipid phantom and method to determine absorption and oxygenation employing changes in moments of DTOFs," Biomed. Opt. Express 14, 3506-3531 (2023).  https://doi.org/10.1364/BOE.492168
  55. G. Liu, K. Huang, Q. Jia, S. Liu, S. Shen, J. Li, E. Dong, P. Lemaillet, D. W. Allen, and R. X. Xu, "Fabrication of a multilayer tissue-mimicking phantom with tunable optical properties to simulate vascular oxygenation and perfusion for optical imaging technology," Appl. Opt. 57, 6772-6780 (2018).  https://doi.org/10.1364/AO.57.006772
  56. C. M. Chen, R. M. Kwasnicki, V. F. Curto, G.-Z. Yang, and B. P. L. Lo, "Tissue oxygenation sensor and an active in vitro phantom for sensor validation," IEEE Sens. J. 19, 8233-8240 (2019).  https://doi.org/10.1109/JSEN.2019.2917122
  57. N. Tomm, L. Ahnen, H. Isler, S. Kleiser, T. Karen, D. Ostojic, M. Wolf, and F. Scholkmann, "Characterization of the optical properties of color pastes for the design of optical phantoms mimicking biological tissue," J. Biophotonics 12, e201800300 (2019). 
  58. H. Assadi, V. Demidov, R. Karshafian, A. Douplik, and I. A. Vitkin, "Microvascular contrast enhancement in optical coherence tomography using microbubbles," J. Biomed. Opt. 21, 076014 (2016). 
  59. P. Stohanzlova and R. Kolar, "Tissue perfusion modelling in optical coherence tomography," Biomed. Eng. Online 16, 27 (2017). 
  60. S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O'Donnell, and R. K. Wang, "Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography," J. Biomed. Opt. 18, 121509 (2013). 
  61. M. Razani, T. W. H. Luk, A. Mariampillai, P. Siegler, T.-R. Kiehl, M. C. Kolios, and V. X. D. Yang, "Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples," Biomed. Opt. Express 5, 895-906 (2014).  https://doi.org/10.1364/BOE.5.000895
  62. P. Jelvehgaran, T. Alderliesten, J. J. Weda, M. de Bruin, D. J. Faber, M. C. Hulshof, T. G. van Leeuwen, M. van Herk, and J. F. de Boer, "Visibility of fiducial markers used for image-guided radiation therapy on optical coherence tomography for registration with CT: An esophageal phantom study," Med. Phys. 44, 6570-6582 (2017).  https://doi.org/10.1002/mp.12624
  63. T. S. Rowe and R. J. Zawadzki, "Development of a corneal tissue phantom for anterior chamber optical coherence tomography (AC-OCT)," Proc. SPIE 8583, 85830I (2013). 
  64. A. Corcoran, G. Muyo, J. van Hemert, A. Gorman, and A. R. Harvey, "Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging," J. Mod. Opt. 62, 1828-1838 (2015).  https://doi.org/10.1080/09500340.2015.1045309
  65. J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, "Retina-simulating phantom for optical coherence tomography," J. Biomed. Opt. 19, 021106 (2014). 
  66. G. C. F. Lee, G. T. Smith, M. Agrawal, T. Leng, and A. K. Ellerbee, "Fabrication of healthy and disease-mimicking retinal phantoms with tapered foveal pits for optical coherence tomography," J. Biomed. Opt. 20, 085004 (2015). 
  67. A. Agrawal, J. Baxi, W. Calhoun, C.-L. Chen, H. Ishikawa, J. S. Schuman, G. Wollstein, and D. X. Hammer, "Optic nerve head measurements with optical coherence tomography: A phantom-based study reveals differences among clinical devices," Investig. Ophthalmol. Vis. Sci. 57, OCT413-OCT420 (2016).  https://doi.org/10.1167/iovs.15-18738
  68. A. C. Lamont, M. A. Restaino, A. T. Alsharhan, Z. Liu, D. X. Hammer, R. D. Sochol, and A. Agrawal, "Direct laser writing of a titanium dioxide-laden retinal cone phantom for adaptive optics-optical coherence tomography," Opt. Mater. Express 10, 2757-2767 (2020).  https://doi.org/10.1364/OME.400450
  69. G. T. Smith, K. L. Lurie, S. A. Khan, J. C. Liao, and A. K. Ellerbee, "Multilayered disease-mimicking bladder phantom with realistic surface topology for optical coherence tomography," Proc. SPIE 8945, 89450E (2014). 
  70. K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, "Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy," J. Biomed. Opt. 19, 036009 (2014). 
  71. N. Zulina, O. Caravaca, G. Liao, S. Gravelyn, M. Schmitt, K. Badu, L. Heroin, and M. J. Gora, "Colon phantoms with cancer lesions for endoscopic characterization with optical coherence tomography," Biomed. Opt. Express 12, 955-968 (2021).  https://doi.org/10.1364/BOE.402081
  72. N. R. Munce, G. A. Wright, A. Mariampillai, B. A. Standish, M. K. K. Leung, L. Tan, K. Lee, B. K. Courtney, A. A. Teitelbaum, B. H. Strauss, I. A. Vitkin, and V. X. D. Yang, "Doppler optical coherence tomography for interventional cardiovascular guidance: In vivo feasibility and forward-viewing probe flow phantom demonstration," J. Biomed. Opt. 15, 011103 (2010). 
  73. C.-E. Bisaillon, M. L. Dufour, and G. Lamouche, "Artery phantoms for intravascular optical coherence tomography: Healthy arteries," Biomed. Opt. Express 2, 2599-2613 (2011).  https://doi.org/10.1364/BOE.2.002599
  74. C.-E. Bisaillon and G. Lamouche, "Artery phantoms for intravascular optical coherence tomography: Diseased arteries," J. Biomed. Opt. 18, 096010 (2013). 
  75. L. B. Christie, W. Zheng, W. Johnson, E. K. Marecki, J. Heidrich, J. Xia, and K. W. Oh, "Review of imaging test phantoms," J. Biomed. Opt. 28, 080903 (2023). 
  76. S. J. Arconada-Alvarez, J. E. Lemaster, J. Wang, and J. V. Jokerst, "The development and characterization of a novel yet simple 3D printed tool to facilitate phantom imaging of photoacoustic contrast agents," Photoacoustics 15, 17-24 (2017). 
  77. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).  https://doi.org/10.1364/OL.24.000291
  78. J.-W. Kang and C.-K. Hong, "Three dimensional shape measurement of a micro Fresnel lens with in-line phase-shifting digital holographic microscopy," J. Opt. Soc. Korea 10, 178- 183 (2006).  https://doi.org/10.3807/JOSK.2006.10.4.178
  79. A. Fiore, C. Bevilacqua, and G. Scarcelli, "Direct three-dimensional measurement of refractive index via dual photonphonon Scattering," Phys. Rev. Lett. 122, 103901 (2019). 
  80. K. Zhang, S. Sasaki, S. Choi, S. Luo, T. Suzuki, and J. Pu, "Measurement of phase refractive index directly from phase distributions detected with a spectrally resolved interferometer," Appl. Opt. 60, 10009-10015 (2021).  https://doi.org/10.1364/AO.438267
  81. W. Krauze, A. Kus, M. Ziemczonok, M. Haimowitz, S. Chowdhury, and M. Kujawinska, "3D scattering microphantom sample to assess quantitative accuracy in tomographic phase microscopy techniques," Sci. Rep. 12, 19586 (2022). 
  82. I. Shevkunov, M. Ziemczonok, M. Kujawinska, and K. Egiazarian, "Complex-domain SVD- and sparsity-based denoising for optical diffraction tomography," Opt. Laser Eng. 159, 107228 (2022). 
  83. L. Hacker, H. Wabnitz, A. Pifferi, T. J. Pfefer, B. W. Pogue, and S. E. Bohndiek, "Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation," Nat. Biomed. Eng. 6, 541-558 (2022).  https://doi.org/10.1038/s41551-022-00890-6
  84. L. Cortese, M. Zanoletti, U. Karadeniz, M. Paglizzi, M. A. Yaqub, D. R. Busch, J. Mesquida, and T. Durduran, "Performance assessment of a commercial continuous-wave nearinfrared spectroscopy tissue oximeter for suitability for use in an international, multi-center clinical trial," Sensors 21, 6957 (2021). 
  85. I. Fredriksson, R. B. Saager, A. J. Burkin, and T. Stromberg, "Evaluation of a pointwise microcirculation assessment method using liquid and multilayered tissue simulating phantoms," J. Biomed. Opt. 22, 115004 (2017). 
  86. M. Majedy, R. B. Saager, T. Stromberg, M. Larsson, and E. G. Salerud, "Spectral characterization of liquid hemoglobin phantoms with varying oxygenation states," J. Biomed. Opt. 27, 074708 (2022). 
  87. H. Chen, G. Liu, S. Zhang, S. Shen, Y. Luo, J. Li, C. J. Roberts, M. Sun, and R. X. Xu, "Fundus-simulating phantom for calibration of retinal vessel oximetry devices," Appl. Opt. 58, 3877-3885 (2019).  https://doi.org/10.1364/AO.58.003877
  88. N. Nasseri, S. Kleiser, D. Ostojic, T. Karen, and M. Wolf, "Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy," Biomed. Opt. Express 7, 4605-4619 (2016).  https://doi.org/10.1364/BOE.7.004605
  89. D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. Sallam, P. Rodmell, J. Crowe, S. Morgan, P. Ritchie, A. R. Harvey, and A. I. McNaught, "Validation of human whole blood oximetry, using a hyperspectral fundus camera with a model eye," Investig. Ophthalmol. Vis. Sci. 52, 2851-2859 (2011).  https://doi.org/10.1167/iovs.10-6217
  90. A. Afshari, R. B. Saager, D. Burgos, W. C. Vogt, J. Wang, G. Mendoza, S. Weininger, K.-B. Sung, A. J. Durkin, and T. J. Pfefer, "Evaluation of the robustness of cerebral oximetry to variations in skin pigmentation using a tissue-simulating phantom," Biomed. Opt. Express 13, 2909-2928 (2022).  https://doi.org/10.1364/BOE.454020
  91. A. J. Rodriguez, S. Vasudevan, M. Farahmand, S. Weininger, W. C. Vogt, C. G. Scully, J. Ramella-Roman, and T. J. Pfefer, "Tissue mimicking materials and finger phantom design for pulse oximetry," Biomed. Opt. Express 15, 2308-2327 (2024).  https://doi.org/10.1364/BOE.518967
  92. T. He, C. Guo, H. Liu, and L. Jiang, "A venipuncture robot with decoupled position and attitude guided by near-infrared vision and force feedback," Int. J. Med. Robot. 19, e2512 (2023). 
  93. J. Huang, S. Jiang, H. Yang, R. Czuma, Y. Yang, F. A. Kozel, and H. Jiang, "Portable diffuse optical tomography for three-dimensional functional neuroimaging in the hospital," Photonics 11, 238 (2024). 
  94. N. Otic, J. Sunwoo, Y. Huang, A. Martin, M. B. Robinson, B. Zimmermann, S. Carp, T. Inder, M. El-Dib, M. A. Franceschini, and M. Renna, "Multi-wavelength multi-distance diffuse correlation spectroscopy system for assessment of premature infants' cerebral hemodynamics," Biomed. Opt. Express 15, 1959-1975 (2024). 
  95. S. Kleiser, D. Ostojic, B. Andresen, N. Jasseri, H. Isler, F. Scholkmann, T. Karen, G. Greisen, and M. Wolf, "Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: An extension," Biomed. Opt. Express 9, 88-101 (2018). 
  96. L. E. MacKenzie, A. R. Harvey, and A. I. McNaught, "Spectroscopic oximetry in the eye: A review," Expert Rev. Ophthalmol. 12, 345-356 (2017). https://doi.org/10.1080/17469899.2017.1318067