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Construction of a Student-Generated Algorithm for
Fraction Measurement Division?

Shin, Jae Hong

This study presents how two eighth grade students generated their own algorithms in the
context of fraction measurement division situations by modifications of unit-segmenting schemes.
Teaching experiment was adopted as a research methodology and part of data from a year-long
teaching experiment were used for this report. The present study indicates that the two participating
students’ construction of reciprocal relationship between the referent whole [one] and the divisor
by using their unit- segmenting schemes and its strategic use finally led the students to establish
an algorithm for fraction measurement division problems, which was on par with the traditional
invert-and-multi- ply algorithm for fraction division. The results of the study imply that teachers’
instruction based on understanding student-generated algorithms needs to be accounted as one
of the crucial characteristics of good mathematics teaching.

|. Background

An algorithm has been defined as “a precise,
systematic method for solving a class of problems.”
(Maurer, 1998, p. 21) or "a step-by-step process that
guarantees the correct solution to a given problem,
provided the steps are executed correctly.” (Barnett,
1998, p. 69). That is, mathematical algorithms, as a
part of mathematics, are powerful tools that contribute
to effective problem solving.

However, in spite of such efficiency and correctness
of mathematical algorithms, Plunkett (1979) argued
that formal written algorithms do not necessarily
correspond to the ways in which people tend to think
about numbers even though they have the advantage
of providing a standard routine that will work for any

numbers. Therefore, algorithms might become harmful
in that algorithms encourage students to give up their
wn thinking, and prevent students from development
of number sense (Kamii & Dominick, 1998). Thus,
the traditional algorithms that all students must
memorize should not define elementary school
mathematics (Campbell, Rowan, and Suarez, 1998).
Bums (1994) also cautioned against the risk of teaching
standard algorithms in classroom.

Imposing the standard arithmetic algorithms on
children is pedagogically risky. It interferes with their
learning, and it can give students the idea that
mathematics is a collection of mysterious and often
magical rules and procedures that must be memorized
and practiced. Teaching children sequences of
prescribed steps for computing focuses their attention

on following the steps, rather than on making sense
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of numerical situations. (p. 472)

Especially, it is hard to negate that an algorithm
for fraction division, so called, ’invert-and-multiply’
algorithm has been taught in school mathematics
without students’ relational understanding (Skemp,
1987) and little has been done in mathematics education
research to find how the invert-and-multiply algorithm
can be meaningfully constructed by learners. Actually,
students’ construction of unit-segmenting schemes has
been studied in a whole number measurement division
situation. For a situation to be established as divisional,
it is always necessary to establish at least two composite
units, one composite unit to be segmented and the
other composite unit to be used in segmenting. The
goal i to find how many times one can use the measuring
unit [the unit to be used in segmenting] with a given
unit to be segmented. Steffe (1992) reported that
Johanna {a participating student in his teaching
experiment] was able to establish her unit-segmenting
scheme as anticipatory and the units to be used in

" segmenting were available to her as iterating units
prior to operating. However, when the composite unit
to be segmented is not completely measured out by
the unit used in segmenting [when producing a
remainder], the divisional situation might be assimilated
as novel and cause perturbation in a student’s use of
her unit-segmenting scheme because the result of a
unit-segmenting scheme produces a fractional quantity
in terms of the segmenting unit, which seems an
unexpected result for a student who has no fractional
knowledge. Therefore, it remains to be investigated
how students modify their whole number division
scheme to solve measurement division problems
involving fractions.

Paper-and-pencil algorithms, nevertheless, are
important tools that equip students for computational

fluency. They should not be disregarded only as
obstacles - in students’ mathematical learning. For
algorithms to be beneficial to students, Ashlock (2006)
argued, the students’ use of the algorithms should
involve conceptual knowledge as well as procedural
skill before the algorithms become mechanical
procedures for the students. In Principle and Standards
for School Mathematics, the National Council of
Teachers of Mathematics (2000) suggested that “when
students compute with strategies they invent or choose
because they are meaningful, their learning tends to
be robust and they are able to remember and apply
their knowledge” (p. 86). Mathematical reasoning and
justification are inherent in the invention of procedures
(Kilpatrick, Swafford, & Findell, 2001) and thus
students reveal their own construct of understanding
with the procedures that they create (Baek, 1998).
Especially, Huinker (1998) reported several advantages
of allowing students to invent their own algorithms
in teaching fractions: 1) interest in solving and posing
word problems with fractions, 2) flexibility in the choice
of strategy for solving fraction word problems and
computation exercises, 3) proficiency in translating
among real-world, concrete, pictorial, oral language,
and symbolic representations, and 4) acquaintance with
communicating and justifying their thinking and

reasoning.

Il. Configuration of the Study &
Research Questions

Providing opportunities for students to develop, -use
and discuss invented algorithms helps to enhance
number and operations sense (Kamii, Lewis, &
Livingston, 1993). Then how can we, as‘tcachexs, create
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learning environments so that students can understand
where and when to use an algorithm? McClain, Cobb
and Bowers (1998) suggested that relational under-
standing (Skemp, 1987) occurs as teachers syste-
matically support students’ construction of personally
meaningful algorithms and these algorithms could
emerge when students engage in sequences of
problem-solving activities designed to provide
opportunities for them to make sense of their
mathematical activity. They also argued that such
approach can not only value students’ construction of
non-standard algorithms, but also avoid two extremes:
to encourage students to invent their own algorithms
with minimal guidance or to teach students to perform
traditional algorithms.

The present study is a rteport about two eighth
grader’s constructive processes of their own algorithms
for fraction measurement division as a part of a
year-long constructivist’ teaching experiment. Teach-
ing experiment environment is supportive for students’
own mathematical development in that 1)} a primary
goal of the teacher in a teaching experiment is to
establish living models of students’ mathematics that
students can possibly develop and 2) teaching experi-
ment consists of a sequence of teaching episodes that
contain problem-solving activities depending on stud-
ents’ progress and 3) the important duty of the teacher-
researcher in the teaching experiment is to attempt
to put aside his or her own concepts and operations
and not to insist that the students learn what he or
she knows (Steffe & Thompson, 2000).

Therefore, research questions in my teaching
experiment for this study are as following;

‘What mathematical operations did the two partici-
pating students develop in the context of fraction

measurement division situations?

What records of the students” mathematical operati-
ons did emerge in symbolic notation as a student-

generated algorithm?

fll. Method of Inquiry

The data that I analyzed in the present study was
part of a year teaching experiment whaose broad purpose
was to understand middle school students’ mathe-
matical reasoning. The teaching experiment began in
rural middle school in northern Georgia. Rosa, one
of the two participants, was chosen after individual
selection interview conducted in October of 2008.
Carol, the other participant, had been chosen in October
of 2007 and was paired with Rosa for her second
year of the teaching experiment. The criterion for
selection of the two students was the ability to use
compoasite units as iterable units, which was an indicator
of their multiplicative reasoning. During the teaching
experiment, we met once or twice a week in about
40-minute teaching episodes where 1 participated in
mostly as a teacher-researcher, or sometimes as a
witness-researcher. All teaching episodes were video-
taped with two cameras for on-going and retrospective
analysis. One camera usually captured the whole picture
of interactions among the pair of students and the
teacher-researcher, and the other camera followed the
students’ written or computer work with the aid of
two witness-researchers, The role of the witness-
researcher was not only assisting in video recording
but also providing other perspectives during all three
phases of the experiment: the actual teaching episodes,
the on-going analysis between episodes during the
experiment, and the retrospective analysis of the

videotapes. Among the collected data during a year
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of the teaching experiment of 2008, eight teaching
episodes were retrospectively analyzed and part of them

were transcribed for the present study.

In terms of data analysis, the first type of analysis
was ongoing analysis that occurred by watching videos
of the teaching episodes and discussing and planning
future episodes. Then a sequence of summaries for
the teaching episodes were created, each of which
provided not only a written description of students’
mathematical activities and interactions with the
teacher-researcher, but also emerging key points in
students’ thinking and learning that were taken into
account for the next teaching episode. The second type
of analysis was a retrospective analysis. The purpose
of the retrospective analysis of the sequence of teaching
episodes was to make models of students’ ways of
operating mathematically through conceptual analysis
of students’ mathematical activities. I, first of all,
attempted to understand what the students’ behaviors
were and hypothesize why the students behaved in
such ways. Then the attribution of the researchers’
construction of a scheme? to the students was made

at this stage.

IV. Analysis

1. Modifications of Unit-Segmenting Schemes for
Fraction Measurement Division - Context of Two

Students’ Construction of Algorithms

When a whole number division problem that
produced a remainder [finding how many times 3 meters
is contained in 5 meters] was posed, Carol and Rosa
assimilated the problem as a divisional situation, which
led them to use a conventional division calculation
method. However, Rosa could not convert her decimal
answer to a fraction form that I had requested. Even
though she later re-assimilated the problem as a situation
for her unit-segmenting scheme, as indicated in her
comments “It’s gonna be one and then something
fraction,” the divisional situation, where a composite
unit to be segmented was not completely measured
out by the other composite unit used in segmenting,
was a novel situation, which produced an unexpected
quantity, which was very difficult (for Rosa) to measure.
It was Carol who eliminated this perturbation in using
her unit-segmenting scheme. With perceptual materials
[a 3-part bar and a 5-part bar on paper], she was able
to regard 5 as one and two-thirds units of 3 as well
as five units of 1 and one unit of 5. I conjecture that
this was possible by her association of the result of
her unit-segmenting scheme {the leftover 2-part bar]
as a situation for her partitive fraction scheme3).
Therefore, if a student constructed a new unit-seg-
menting scheme through a modification whereby her
partitive fraction scheme was embedded as a subscheme
in the assimilating part of her unit-segmenting scheme,
1 would attribute to the construction of a unit-seg-
menting scheme with a remainder, which can be
considered as a modified unit-segmenting scheme of
whole number measurement division.

In the divisional situations with a fraction divisor

2) A scheme consists of three parts: an experiential situation which is activated or recognized by a student, the
specific activity associated with the conceived situation, and a certain result of the activity engendered by the
student’s prediction (cf. von Glasersfeld, 1995; Olive & Steffe, 2002)

3) A partitive fraction scheme is the first scheme to be a genuine fractional scheme (Steffe, 2002). It enables a
child to establish a substantial but limited understanding of fractions as parts of a specific partitioned whole

(Tzur, 1999).
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and a whole number dividend, when the fraction divisor
evenly divided the whole dividend, Carol showed her
generalizing assimilation¥ of her unit-segmenting
scheme, which resulted in inclusion of fractional
quantities as segmenting units in the assimilating part
of the scheme. Similarly Rosa’s numeric calculation
of division was connected to her unit-segmenting
scheme, which meant that her division algorithm stood
in for her unit-segmenting scheme. However, when
the fractional divisor did not evenly divide the whole
number dividend, Rosa seemed to fail to associate her
division calculation result with her unit-segmenting
scheme in order to deal with the entailed remainder
and it indicated that she was yet to construct a
unit-segmenting scheme with a remainder. However,
in the teaching episode held on December, 5 of 2008,
Rosa finally constructed a unit-segmenting scheme with
a remainder when measuring 1-meter with 3/5-meter,
but it was a construction by retrospective accommo-
dationS in the sense that her construction was possible

through communications with Carol, not by herself.

2. Finding What Part of 7/5-Meter is Contained

in 1 Meter

Following the previous fraction division problem
(measuring 1-meter with 3/5-meter), my concern was
to further investigate how the participating students
modified their unit-segmenting scheme (with a
remainder) when a fraction divisor did not evenly divide
a whole number dividend, and when a fraction divisor

larger than a whole number dividend was used as a
measuring unit. Originally, the problem in the present
protocol was "How many times is 7/5-meters contained
in 1-meter” However, the two students were totally
at a loss with the problem. To construct a smaller
quantity by multiplying [times] a number to a larger
quantity seemed to them a sort of an unimaginable
situation because the word 'times’ had always been
used for increasing a quantity. Thus, I decided to replace
’how many times’ with "how much part’ in the problem
hoping that the students could attend to the larger unit
as a referent unit and compare two different quantities.

For the following protocols, R stands for Rosa, C
for Carol, T for the teacher-researcher (myself), and
W for a witness-researcher. Comments enclosed in
parentheses describe students’ nonverbal actions or
interactions from the teacher-researcher’s perspective.
Ellipses (...) indicate a sentence or an idea that seems
to trail off. Four periods (....) denote omitted dialogue

or interaction.

Protocol I on 12/05/08:

T: Yeah, then let’s go to this part. How much part
is seven-fifths meters contained in one meter?
(Carol draws a 5-part bar and two more parts
separately and shades them all. Rosa also draws
a S5-part bar and adds two more parts on the right
end of the 5-part bar using dotted lines. However,
she turns to numeric calculation. She writes
*7/5x5(5 = 35/25’ and ’7/5’ but crosses a line
through the numeric expressions as she feels
something wrong with her calculation. See Figure
IV-1a and Figure [V-1b)

4) An assimilation is generalizing if the scheme involved in assimilation is used in a situation that contains sensory
material or conceptual items that are novel for the scheme but the scheme does not recognize it (Steffe & Olive,

2010).

5) A retrospective accommodation involves selecting and using conceptual elements already constructed. From the
student’s perspective, a retrospective accommodation is self-initiated in that it is the student who must select and
use the concept. From an observer’s perspective, the conceptual elements may be selected as result of interactive

communication (Steffe & Wiegel, 1994)
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C: (Carol counts five parts and seven parts several
times in turn and makes a face.) (Without a
confidence,) would it be five-sevenths?

R: How did you get it, Carol?

1)C: Um... I'm not really sure but I was looking at
it if you have one, two, three, four, five, that’s
the whole.

R: (At the same time with Carol) that’s the one.

2)C: And you have the extra two and then I would
make it seven but then you have the extra one meter
which is what you have.

R: Oh~ I see-how she did it. I see. Okay. I totally
see how she got it.

. T: Okay. So, (Teacher turns to look at Rosa’ work.)

R: Five out of the seven pieces. This (her five patts
drawn in solid lines) is the one and here is the
extra two for the seven. So this (five parts drawn
in solid lines) is one. So five over total seven pieces
because it’s seven. I see, I see it now.

| nexey

1)

7

<Figure IV-1a & 1b> Carol’s (Above) & Rosa’s

(Below) drawings for 7/5-meter and 1-meter

When the students assimilated this problem as a
situation for a unit-segmenting scheme, they struggled

with it because the segmenting unit [7/5-meter] was

larger that the unit to be segmented [1-meter], which
was a novel situation for them to use their unit-
segmenting schemes. Rosa also drew a 5-part bar and
added two more parts on the right end of the 5-part
bar using dotted lines but suddenly she turned to numeric
calculation again. She wrote down *7/5x5/5 = 35/25’
and *7/5" and then crossed a line over the numeric
expression as she felt that something went wrong. On
the other hand, it was Carol who found the answer
first. She drew a S-part bar and two more parts separately
and shaded them all. After counting five parts and
seven parts several times in turn, she provided an
answer, “five-sevenths.” Her comment 1) and 2)
indicated that her answer came from the part-whole
relation based on the visual sensory-motor information
through comparing the sizes of her five parts with
her seven parts. At this time, what I would conjecture
was that a situation where the unit used in segmenting
was larger than the unit to be segmented, might be
another epistemological obstacle for the students and
further a reason to inhibit them from expanding their
measuring-out activity using a unit-segmenting scheme.
Carol and Rosa needed to expand the range of
assimilating situations of their unit-segmenting scheme
so that it could include a situation where a smaller
quantity was to be measured with a larger quantity.
I conjecture that until the students realize that the result
can be obtained in the same way as they deal with
a remainder in the use of a unit-segmenting scheme
with a remainder, which leads that the range of
assimilated situations of their unit-segmenting scheme
is generalized to include a situation where a smaller
quantity is to be measured with a larger quantity, the
epistemological obstacle observed in this protocol will
remain as a main cause of their perturbation when

uéing their unit-segmenting scheme.
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3.

Finding How Much Part of 7/5-Meters is

Contained in 2 Meters

On the line of exploring the participating students’

use of ‘their unit-segmenting scheme with a fraction

divisor, I immediately posed a similar problem to what

was asked in the previous protocol with an expectation

of their flexible use of the scheme 1fn a similar but

different problem situation.

Protocol II on 12/05/08:

W:

C:
T:
C:

How many times is seven-fifths contained in two
meters? Seven-fifths meters contained in two
meters.

Would it be twice?

Twice of what?

Twice seven-fifths.

3)R: So it’s seven-fifths in ten-fifths, right?

C:

R:
C:
R:
T:

Okay. Two meters. (Carol draws two 5-part bars
and shades the whole parts of one 5-part bar and
two parts of the other 5-part bar. Rosa draws a
7-part bar vertically and adds three more parts on
top of the bar using dotted lines. See Figure [V-2a
and 2b. Carol writes down ’1 2/7° on the paper.)
Is that the answer? (Witness-researcher shakes his
head.) Wait. (Carol writes "2/7+3/7=5/7" and ’1 5/T")
Right? (Witness-researcher shakes his head again.)
Is that five-sevenths?

One and five-sevenths?

It has to be more than itself.

(To Carol) can you explain it to me?

4)C: Um, I think I did it wrong. I think I added too

C:
R:

many, but if you have it one time (pointing out
the shaded seven parts) it goes into the second one
and you have one and two-sevenths. But then you
still have the extra three-sevenths. Then it can go

into... even if you don’t have the whole one.

: Sorry, it’s hard to see. Can you, yeah, seven-fifths

is
Wait! No, no, no, no.
(At the same time with Carol) is it one and three-
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sevenths? One and three-sevenths, one and three-

sevenths. I'm sorry.

: Yeah, it’s one and three-sevenths. Because 1 added

those two (the shaded S-part bar and the shaded
two parts of the other 5-part bar) cause that’s one
tight there. (Carol draws a circle holding the shaded
seven parts.) This equals one.

: (At the same time with Carol) I miscalculated. It’s

one and three-sevenths.

: It’s kind of obvious, like there’s three, three-sevenths

left because this (seven parts of the 10-part bar)
is the whole.

: Yes, that kind of that is two-sevenths, one that

should’ve been one whole.

: Ten over five which is the two meters times five

over seven and I got fifty over thirty five which
is one and three-sevenths because this three-sevenths
(the unshaded three parts of her 10-part bar) which
is the ten-fifths of you want is out of here (the
shaded seven parts of her 10-part bar.) So, that’s
gonna be three-sevenths, right? Yes...yes, yes, yes.

: Three-sevenths. Okay.

<Figure [V-2a & 2b> Carol’s (Above) & Rosa’s

(Below) drawings for 7/5-meter in 2-meters



If Rosa’s comment 3) stood in for her conception
that seven-fifths consists of seven one-fifths and
ten-fifths consists of ten one-fifths, any one-fifth of
which can be iterated seven times and ten times to
make seven-fifths and ten-fifths, she might have
immediately solved this problem as in the same way
as to measure 10 meters out with a unit of 7 meters.
In other words, the construction of a fractional
connected number®), say, 10/7, as a composite unit
containing one composite unit consisting of seven
one-fifths and another composite unit consisting of
three one-fifths can be crucial to solve this problem.
Although Rosa and Carol constructed bars for 7/5 meters
and two [10/5] meters on paper, there was no evidence
that they assimilated the 7/5-meter bar and the
10/5-meter bar based on the construction of interiorized
fractional connected numbers. Once again, for this
problem Rosa showed her reliance on a division
algorithm, which was a typical behavior of Rosa
whenever she got stuck with her drawing to figure
out the answer. However, in that she independently
corrected her answer and established a relation between
her division algorithm with her drawing in terms of
measuring out with 7/5-meter, she retrospectively
accommodated her concept of fraction measurement
division using conceptual elements of unit-segmenting
scheme and partitivve fraction scheme.

On the other hand, Carol’s writing of *2/7+3/7=5/7
and ’1 5/7° revealed an interesting aspect of her
fractional knowledge because it showed her conflation
of units when measuring out a quantity with an
(improper) fractional quantity. Somehow she felt the
necessity of measuring out the whole two meters each

meter of which was partitioned into five parts. She

could measure out the remaining three parts [3/5-meter]
using seven parts [7/5-meter] as a segmenting unit
and get three-sevenths of the segmenting unit for the
remainder parts. However, she conflated two units [a
given unit of a meter and a segmenting unit, 7/5-meter}
when she measured seven parts consisting of one 5-part
bar and two parts of the other 5-part bar. Her confusion
of the two measuring units was indicated by her
comments 4), and such confusion of units caused her
to indentify seven parts as one and two-sevenths, which
led her to get one and five-sevenths as a final answer.
My conjecture is that, as in the case of Rosa, if Carol
had assimilated the problem situation based on the
interiorized iterability of a unit fraction [1/5], she might
have found the answer more easily. In other words,
in the previous problems such as “measuring 5 meters
with 3 meters” or “measuring 1 meter with 3/5 meter”
the students did not show any evidence that they used
the multiplicative relationship of a unit fraction with
a whole unit. Although the former might require to
construct a three-levels-of-units structure in order to
deal with the remainder [2 meters], where 5 meters
was measured by 3 meters and thus 3-meter should
emerge as another level of unit in relation to the given
two units [1 meter and 5 meters,] the construction
of such a three-levels-of-units structure was inherited
from the students’ construction of an iterability of one,
rather than a unit fraction. Likely, in the latter problem
although it involved a fractional quantity [3/5-meter]
and required the students’ construction of three levels
of units to see the remainder [2/5-meter] as two-thirds
of the nmewly constructed unit of 3/5-meter, the
relationship of a unit fraction {one-fifth] with the whole

one was implicit just as the unit fraction in a partitive

6) Fractional connected numbers are connected numbers in which unit fractions are the umits of the connected
numbers. The connected numbers are numbers whose countable items are the elements of a connected but

segmented continuous unit (cf. Steffe & Olive, 2010)
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fraction scheme has an implicit iterability not
transcending the one whole. However, in order to
construct a three-levels-of-units structure involving
7/5-meters in the present problem, I would argue that
the construction of a multiplicative relationship of
one-fifth with one whole was essential because the
students should have conceived seven-fifths as a unit
of seven units of one-fifth, any of which could be
iterated five times to make a referent whole, five-fifths
and also seven times for seven-fifths. As described
above, both students could not establish such
relationships with the given 7/5 meters and 2 meters
based on a unit fraction of 1/5 for a while, even with
two drawings [seven parts for 7/5-meter and ten parts
for 2-meter]. Also, the fact that they were able to
their

reflect on mathematical

operations and
self-corrected the answer by themselves with two
drawings implied that perceptual information for the
given quantities was still one of the critical factors
for them to conduct their mathematical {unit-seg-

menting] operations.

4. Finding How Much Part of 5/3 Meters is
Contained in 176 Meters - Carol’s Cons-
truction of a Student-Generated Algorithm

for Fraction Measurement Division

Since the two students got the answers for the two
problems, "How much of or how many times 7/5 meters
is contained in 1 meter or 2 meters?” as a result of
their unit-segmenting scheme with a remainder, 1
wanted to know whether the students could strategically
use those results as material for the other measuring-out
situations, especially when a relatively large quantity
should be measured, that is, when to make drawings

to get perceptual sensory-motor information is actually

not allowed. When the students were asked about how
many times 7/5 meters was contained in 10 meters,
both of them easily found the answer, fifty-sevenths
by multiplying five to the previous result, ten-sevenths,
which was the answer for the problem "How many
times is 7/5 meters contained in 2 meters?” Further,
when I increased the length to be measured to 31
meters, they easily wrote down °155/7° on their own
paper by calculating *5/7x31/1" with an aid of the
witness-researcher’s reminding question, "How many
times is 7/5 meters contained in one meter?” and
encouraging the students to use the result for their
solution. Therefore, the concern for the next teaching
experiment was whether such a strategic use of the
result of their unit-segmenting schemes with a
remainder remains permanent so that it can be used
in a different but similar problem.

When they were asked to find how many times
5/3 meters was contained in 176 meters, it was Rosa
that first multiplied one hundred seventy six by
three-fifths. However, it was not a strategic use of
her unit-segmenting scheme with a remainder. Rather,
it was reemergence of the memorized invert-and-
multiply algorithm for a fraction division problem
whenever Rosa assimilated a problem as a fraction
divisional situation. Such lack of her mathematical
reasoning was indicated by the uncertainty of her answer
right after finishing calculation of her fraction
multiplication as "Is that right? It doesn’t look right.”
Although 1 eagerly attempted to induce her to use
the other way related to what she did before, Rosa
could not use her unit-segmenting scheme strategically
for this problem. 1 had to directly ask her how much
part of five-thirds was contained in one, but she could
not figure out three-fifths of five-thirds was one. Her

answer was two-thirds emphasizing the difference
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between five-thirds and one whole. Upon my request
of  verification for her answer, she wrote down
’5/3x3/3.” She seemed to use an invert-and-multiply
algorithm for the division of ’5/3+3/3°, rather than
*3/3+5/3. This kind of lacuna in her mathematical
reasoning coincided with what she showed in the solving
process for the previous measuring-out problem when
the measuring quantity was larger than the measured
quantity (cf. Protocol I). On the other hand, Carol
was catching up with the present problem with an
aid of the witness-researcher because she spent more
time in converting her answer into a decimal form

for the previous problem.

Protocol III on 12/05/08:

W: Remember, Carol. The problem is how many times
is five-thirds contained in

C: One hundred seventy six.

W: One hundred seventy six. (When Carol writes down
’5{3x176/1" for calculation, the witness-researcher
intervenes.) Wait, you missed a step.

5)C: Oh, wait. I have to find how many times it goes

into the one. (Carol draws two 3-part bars and shades
all three parts of the first bar and two parts of

the second bar. Then she writes down ’5/6’)
Five-sixths? Is that how many times it goes into
one? No?

No.

: Make it five-thirds.

: Oh, it goes in three-fifths times, wouldn’t it?
Yes.

: Right, three-fifths.

: Three-fifths. Then it would times... (Carol writes
down *3/5x176/1" and accidentally got *628/5’ by
miscalculation. On the other hand, Rosa struggles
to find how much part of five-thirds is contained

Q=004

C:
R:

in one.)

1 1 got it!
: Okay, hold a second.

(Rosa insists that her answer should be two-thirds
rather than three-fifths. Upon the teacher’s request
of verifying her answer, she writes down ’5/3x3/3’
and gets '5/3." She looks bewildered by the
unexpected answer.)

Have you seen the pattern? Like, um

Sometimes it works, sometimes it doesn’t.

6)C: Rosa, on these (pointing her drawings for the

= Q

RO

problem in the Protocol 1. See Figure IV-la) if it
was seven-fifths, it turmed into five-sevenths. There
is kind of a pattern. And then on the other one,
it was five-sevenths and that ended up being
seven-fifths. And if you look at this one (back to
the current problem), it's five-thirds and it ends
up, if you recognize the pattern, it would be

: One and two-thirds?
: No, three-fifths.
: How much part of... Carol, can I ask a question?

How much part of five-thirds contained in one meter?

: One? Three-fifths.

: If the three is the total, okay, I think I get it.
: (To Rosa) can you see the three-fifths?

: Okay, so this is, okay. I have to draw it over here.

So here, (Rosa draws a 5-part bar.) There is three
or five. Okay, so this (three parts of the 5-part bar)
is one right here and this (the whole 5-part bar)
is five. And if you want to know how many times
is this (three parts) in the total right?

: Um-hm.
: Okay, um... (Rosa writes down ’5/3’) and it’s

three-fifths because it’s three out of the total five.
(The teacher nods his head.) Okay, like I see how
she is doing it but then I forget what I do, what
I do.

: Isn’t there also the pattern? Like I said five-thirds

ends up being three-fifths? And the other one was

7) Note that a part of Rosa’s verbal expressions and communications with the teacher (myself) are omitted because
the intention of this protocol is to show Carol’s construction of an algorithm for fraction measurement division
and almost all parts of activities were done individually. However, brief descriptions of Rosa’s work are also

described to help understand the context.
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seven-fifths ends up being five-sevenths.

R: So it’s just the reciprocal of it. If you want to
find it in one, it’s the reciprocal.

C: Yeah.

T: So can you see why the reciprocal works together?

R: Yeah, I see how it works together.

T: Okay. Carol, can you explain from the start so that
Rosa and 1 share?

TC: Okay. I did from the five-thirds in a hundred
seventy six. And then I found out the three-fifths
for one like one whole, it was three-fifths of one
whole. Then I times that by a hundred seventy six
because that was the number in the problem. 1 got
six hundred twenty eight over five. Denominator
multiplication. And then 1 simplified it.

Unlike numeric notations of

Rosa, Carol’s
*3/5x176/1> did not come from the conventional
invert-and-multiply algorithm for fraction division. If
so, the order of writing for fraction multiplication should
have been reversed like *176/1x3/5" for the division
problem of *176/1+5/3' as Rosa usually did. Carol
apparently formed the goal for activating her
unit-segmenting scheme as in her comment 5). Further,
Carol’s comment 7) to reflect her solving processes
indicated that her unit-segmenting operation was
fundamental in her further mathematical operations
for the present problem. Actually, her mathematical
operations also involved units-coordinating operations.
That is, she distributed three-fifths over each of one
hundred seventy six. However, the difference from
her units-coordinating operation in her whole number
multiplication®), was that a fraction was distributed

over a whole number, She constructed the fraction,

three-fifths as an iterating unit to get one hundred

seventy six of three-fifths like getting fifteen by iterating
a unit of three five times. It means the assimilating
situations of Carol’s units-coordinating scheme were
expanded and started to include a fraction. However,
such a generalizing assimilation of her units-coord-
inating scheme was still to be investigated.

More importantly, she abstracted her unit-seg-
menting operations from the previous two problems,
"How much of seven-fifths is contained in one or two
meters?” and found a pattern for fraction measurement
division problems as in her comment 6). Therefore,
for Carol to find the answer for how many times
five-thirds was contained in one hundred seventy six,
she could just flip five-thirds to make three-fifths and
multiply it by one hundred seventy six, which exactly
coincided with the conventional invert-and-multiply
algorithm for fraction division. I would call Carol’s
construction as a student-generated algorithm for
fraction measurement division. “Child-generated
algorithms as they are manifest in notation are nothing
but records of operation, and these records serve the
function of constructive generalization” (Steffe &
Ulrich, 2010, p. 274). The flipping pattern was an
abstracted record of her unit-segmenting operations,
especially when measuring a unit whole with a fractional
quantity more than the whole. On the other hand, even
with Carol’s explanation, Rosa did not seem to
understand what Carol was trying to say. Rosa’s using
the invert-and-multiply algorithm was a procedure. A
procedure is a scheme in which the activity is only
connected to rather than contained in the first part
of the scheme (Olive & Steffe, 2010, p. 214). In Rosa’s
case, the first part of her procedure was constituted

by the words “How many times, contained.” Her activity

8) To find the product of five and three, if a child mentally inserts the unit of three into each unit of five to
produce five threes prior to actual activity, the involved scheme is referred to as a units-coordination scheme

(Steffe, 1991).
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of dividing using the invert-and-multiply algorithm can

be regarded as her meaning for the words.

5. Finding a Fraction of 3/4-Meter that Amounts
to 31 Meters - Rosa’s Construction of a
Unit-Segmenting Scheme with a Remainder
and its Strategic Use

Almost three months later, a similar fraction
measurement division problem was posed to the
participating students again partially due to the winter
break between the teaching protocols. At that time,
I focused my attention mainly on Rosa because she
had not indicated construction of her self-generated
algorithm for fraction measurement division as Carol

did in the previous protocol.

Protocol TV on 02/27/09:

T: What fraction of five-sevenths should be one-
meter? Five-sevenths,
(Rosa makes a 5-part bar and pulls out two
parts from the bar to arrange them with the
bar in a row.)

C: Sevenths. One and two-fifths?

R: (Rosa does not seem to listen to Carol’s ans-

wer.) I should’ve set those together. And you

have one, two, three, four, five and you need

to make one meter?

Yeah. What fraction of...

Okay. One... and two-fifths.

That’s what I said.

One and two-fifths.

Yeah. Because five is your whole. We were

looking at four instead of three?.

FROo RS

T: Let’s listen to your, Rosa’s explanation.

8R: Okay. Instead making seven, um.. I took,
this (5-part bar) is five-sevenths. And here is
two other ones to make the whole one meter.

But... so this (5-part bar) is one and you need
two more to make seventh-sevenths. But two
more of this (S-part bar), because this is your
whole. So if there is five in total and you
need two, it’s gonna be two-fifths plus one
original bar that you have right there.

T: Okay, let’s go back to the second problem.
How could we solve this problem? Some
fraction of three-fourths meter amounts to
thirty-one meters.

=¥

: What did you multiply?

R: Oh, what did 1 multiply. Four over three ti-
mes thirty-one over one.

T: Why?

R: Why. Okay, I know that four over three is
one meter. And you're trying to see how
many, thirty-one

um.. I'm trying to get

meters. So  you times

thirty-one.

just multiply it

Immediately before the problem in this teaching
protocol, a similar problem [what fraction of 3/4-meter
amounts to 1-meter?] was posed to both students and
they struggled to solve it for about ten minutes. Although
they constructed a 4-part bar for one meter and a
3/4-meter bar by pulling out three parts from the one
meter bar partitioned into four parts, the problem that
began with “What fraction of.." did not seem to provoke
any fraction scheme available to them in order to cope
with the problem situation. Until the witness-researcher
changed the problem into “What times of 3/4-meter
is contained in I-meter,” they could not assimilate the
problem as a situation for their unit-segmenting scheme
with a remainder that they had constructed before (cf.
Protocol I and II). Once they assimilated the problem

as a situation for their unit-segmenting scheme, this

9) Both students had struggled with the problem to find what fraction of 3/4-meter amounts to one meter right

before this teaching episode,
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teaching protocol revealed the first indication that Rosa
bad constructed a unit-segmenting scheme with a
remainder by independently solving the posed problem.
Actually, in the previous teaching episodes involving
fraction measurement division, it was Carol who
provided explanations first and who led communi-
cations among us. Rosa, in contrast, mostly assimilated
Carol’s activities and explanations to find solutions,
rather than by herself, although she was very quick
to assimilate Carol’s explications and find the pattern
of Carol’s work. However, in this protocol although
Carol suggested her answer first, Rosa did not seem
to attend to Carol’s answer and instead found her answer
by herself. Her comments 8) before Carol’s explanation
corroborated that Rosa had constructed a unit-seg-
menting scheme with a remainder embedding her
partitive fraction scheme as a subscheme in the first
part of the unit-segmenting scheme. That is, she was
explicitly aware of her segmenting unit {5/7-meter]
and conceived the leftover [2/7-meter] in terms of the
unit used in segmenting operations {two-fifths of the
5/7-meter]. Further, Rosa indicated a similar strategic
use of her unit-segmenting scheme to solve a more
complex problem [What fraction of 3/4-meter does
amount 1o 31 meters?] in a way similar to Carol in
Protocol III [How many times is 5/3 meters contained
in 176 meters?]. Rosa knew that four-thirds of 3/4-meter
was contained in one meter and used it to find a fraction
of 3/4-meter to get 31 meters by iterating four-thirds
31 times. Obviously that was a big mathematical
progress for Rosa, when compared with her struggles
in Protocol IHI, because at that time she could not
use the result of her unit-segmenting scheme with a
remainder for other mathematical situations, even with
Carol’s very detailed explanations. Now Rosa can be

attributed with construction of a pattern for fraction

measurement division calculation, which is on par with
the traditional invert-and-multiply algorithm for frac-

tion division.

V. Discussion

According to Campbell et al. (1998), a student-
generated algorithm can be acceptable under the
conditions that 1) the procedure is efficient enough
to be used regularly without considerable loss of time
and without frustration due to the number of recorded
steps required, 2) the algorithm is mathematically valid
and 3) generalizable. In that sense, the construction
of a pattern that the two participating students indicated
in the context of fraction measurement division can
be acceptable as a student-generated algorithm because
1) the procedure was efficient enough to be applied
to fraction measurement division situations just as the
invert-and-multiply algorithm could, 2) the pattern was
mathematically sound based on the reciprocal
relationship between the divisor and one whole and
3) it was generalizable enough to involve fractional
numbers as well as whole numbers in both divisor
and dividend.

Thus, this analysis provides a possible constructive
itinerary that teachers could use as a reference when
they encourage their students to engage in meaningful
mathematical activities with an invert-and-multiply
algorithm. In other words, I was able to observe the
two students in my teaching experiment not only know
the algorithm, but also when and how to apply the
algorithm correctly to novel situations through
generating their own algorithms on the basis of their
fractional knowledge, This implies that students needs

to be encouraged and allowed to explore such
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knowledge-construction processes in classroom which
possibly leads the students to feel a logical necessity
to develop better notation and language to be more
efficient or to communicate their ideas to the other
students, Then the understanding demonstrated by
students can be guided into the conventional algorithms,
resulting in both conceptual and procedural under-
standing.

In addition, the results of the present study imply
that instruction based on understanding student-ge-
nerated algorithms needs to be accounted as one of
the crucial characteristics of good mathematics
teachers’ in that no pedagogical decision can be made
until students’ mathematical actions and operations are
comprehended by the teachers. In other words,
mathematical knowledge for teaching should entail the
ability to appraise students’ inventing work, otherwise
teachers are less able to provide meaningful instructions

from learners’ [students’] point of view.
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