• Title/Summary/Keyword: Mazur-Ulam theorem

Search Result 5, Processing Time 0.02 seconds

THE ALEKSANDROV PROBLEM AND THE MAZUR-ULAM THEOREM ON LINEAR n-NORMED SPACES

  • Yumei, Ma
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1631-1637
    • /
    • 2013
  • This paper generalizes the Aleksandrov problem and Mazur Ulam theorem to the case of $n$-normed spaces. For real $n$-normed spaces X and Y, we will prove that $f$ is an affine isometry when the mapping satisfies the weaker assumptions that preserves unit distance, $n$-colinear and 2-colinear on same-order.

ISOMETRIES IN PROBABILISTIC 2-NORMED SPACES

  • Rahbarnia, F.;Cho, Yeol Je;Saadati, R.;Sadeghi, Gh.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.623-633
    • /
    • 2009
  • The classical Mazur-Ulam theorem states that every surjective isometry between real normed spaces is affine. In this paper, we study 2-isometries in probabilistic 2-normed spaces.

  • PDF

CHARACTERIZATION ON 2-ISOMETRIES IN NON-ARCHIMEDEAN 2-NORMED SPACES

  • Choy, Jaeyoo;Ku, Se-Hyun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • Let f be an 2-isometry on a non-Archimedean 2-normed space. In this paper, we prove that the barycenter of triangle is invariant for f up to the translation by f(0), in this case, needless to say, we can imply naturally the Mazur-Ulam theorem in non-Archimedean 2-normed spaces.

  • PDF

GENERALIZATIONS OF ALESANDROV PROBLEM AND MAZUR-ULAM THEOREM FOR TWO-ISOMETRIES AND TWO-EXPANSIVE MAPPINGS

  • Khodaei, Hamid;Mohammadi, Abdulqader
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.771-782
    • /
    • 2019
  • We show that mappings preserving unit distance are close to two-isometries. We also prove that a mapping f is a linear isometry up to translation when f is a two-expansive surjective mapping preserving unit distance. Then we apply these results to consider two-isometries between normed spaces, strictly convex normed spaces and unital $C^*$-algebras. Finally, we propose some remarks and problems about generalized two-isometries on Banach spaces.

GENERALIZED ISOMETRY IN NORMED SPACES

  • Zivari-Kazempour, Abbas
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.105-112
    • /
    • 2022
  • Let g : X ⟶ Y and f : Y ⟶ Z be two maps between real normed linear spaces. Then f is called generalized isometry or g-isometry if for each x, y ∈ X, ║f(g(x)) - f(g(y))║ = ║g(x) - g(y)║. In this paper, under special hypotheses, we prove that each generalized isometry is affine. Some examples of generalized isometry are given as well.