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CHARACTERIZATION ON 2-ISOMETRIES IN
NON-ARCHIMEDEAN 2-NORMED SPACES

Jaeyoo Choy* and Se-Hyun Ku**

Abstract. Let f be an 2-isometry on a non-Archimedean 2-normed
space. In this paper, we prove that the barycenter of triangle is in-
variant for f up to the translation by f(0), in this case, needless
to say, we can imply naturally the Mazur-Ulam theorem in non-
Archimedean 2-normed spaces.

1. Introduction

The theory of isometry was begun by S. Mazur and S. Ulam [5]. They
have proved that any isometry f from a real normed linear space onto
another is affine (i.e., x → f(x) − f(0) is linear). But, for a complex
normed vector spaces, it does not hold, i.e. not necessarily complex-
linear. Consider the conjugation on C as an example. J. A. Baker
raised a question if the result holds without the surjective assumption.
As a partial answer of the question, he proved that an isometry from a
real normed space into a strictly convex real normed space is affine [2].
We call the problems about the affiness of isometries on linear spaces
(preserving a certain normed structure), by the Mazur–Ulam problem.
Please see further history and various discussion of isometries on linear
spaces relating Mazur–Ulam problem in [6, 7] and the references therein.

The motivation of this paper stems on the previous work of H.-Y.
Chu [4] studying the Mazur–Ulam problem of 2-isometries on linear 2-
normed spaces.

Received January 05, 2009; Accepted February 17, 2009.
2000 Mathematics Subject Classification: Primary 46S10; Secondary 47S10,

26E30, 12J25.
Key words and phrases: 2-isometry, Mazur–Ulam theorem, non-Archimedean 2-

normed space.
Correspondence should be addressed to Se-Hyun Ku, shku@cnu.ac.kr.
Jaeyoo Choy was supported by Korea Research Foundation Grant(KRF-2008-331-

C00015).



66 Jaeyoo Choy and Se-Hyun Ku

A valuation is a map | · | from a field K into [0,∞) such that 0 is
the unique element having the 0 valuation, |rs| = |r||s| and the triangle
inequality holds, i.e.,

|r + s| ≤ |r|+ |s| for all r, s ∈ K.

We call a field K a valued field if K carries an valuation. Throughout
this paper, we always assume the base field is a valued field, hence call
it simply a field. The usual absolute values of R and C are examples of
valuations.

Let us consider a valuation which satisfies a stronger condition than
the triangle inequality. If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|} for all r, s ∈ K,

then the map | · | is called a non-Archimedean or ultrametric valuation,
and the field is called a non-Archimedean field. Clearly |1| = | − 1| = 1
and |n| ≤ 1 for all n ∈ N. A trivial example of a non-Archimedean
valuation is the map | · | taking everything but 0 into 1 and |0| = 0.

Let X be a vector space over a field K with a non-Archimedean valu-
ation | · |. A function ‖ · ‖ : X → [0,∞) is said to be a non-Archimedean
norm if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖ (r ∈ K, x ∈ X );
(iii) the strong triangle inequality

‖x + y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X ).

Then (X , ‖ · ‖) is called a non-Archimedean space.
In general, the classical Mazur–Ulam theorem is not valid in the

content of non-Archimedean 2-normed spaces. But under some con-
ditions, Amyary et al. [1] present a Mazur–Ulam type theorem in non-
Archimedean 2-normed spaces.

In this paper, we prove that the barycenter of triangle carries the
barycenter of corresponding triangle. As a consequence, we show the
Mazur–Ulam problem on non-Archimedean 2-normed spaces using the
above statement.

2. Main results

Definition 2.1. [1] Let X be a vector space of dimension greater
than 1 over a field K with a non-Archimedean valuation | · |. A function
‖·, ·‖ : X ×X → R is said to be a non-Archimedean 2-norm if it satisfies
the following conditions:
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(i) ‖x, y‖ = 0 if and only if x, y are linearly dependent ;
(ii) ‖x, y‖ = ‖y, x‖;
(iii) ‖rx, y‖ = |r|‖x, y‖ (r ∈ K, x, y ∈ X);
(iv) the strong triangle inequality

‖x, y + z‖ ≤ max{‖x, y‖, ‖x, z‖} (x, y, z ∈ X).

Then (X , ‖·, ·‖) is called a non-Archimedean 2-normed space.

We can say that the set ‖X ,X‖ := {‖x, y‖ : x, y ∈ X} is same as
{|r| : r ∈ K} once ‖X ,X‖ is of a positive dimension. Let X and Y be
non-Archimedean 2-normed spaces and let f : X → Y be a function.
Then f is called a 2-isometry if

‖x− z, y − z‖ = ‖f(x)− f(z), f(y)− f(z)‖
for all x, y and z in X .

From now on, (X , ‖·, ·‖) denotes a non-Archimedean 2-normed space.

Lemma 2.2. [1] Let (X , ‖·, ·‖) be a non-Archimedean 2-normed space.
Then,

‖x, y‖ = ‖x, y + γx‖
for all x, y ∈ X and all γ ∈ K.

For non-zero vectors x, y in X , let V(x, y) denote the subspace of X
generated by x and y. A non-Archimedean 2-normed space X over a
filed K is called strictly convex if for all x, y, z ∈ X ,

‖x + y, z‖ = max{‖x, z‖, ‖y, z‖},
and the conditions ‖x, z‖ = ‖y, z‖ and z /∈ V(x, y) imply x = y; see [1].

Lemma 2.3. Let X be a strictly convex non-Archimedean 2-normed
space over a non-Archimedean field K satisfying |2| = |3| = 1. Suppose
a triple x, y, z ∈ X satisfies ‖x−y, x− z‖ 6= 0. Then x+y+z

3 is the unique
member u of X satisfying

‖x− y, x− u‖ = ‖y − z, y − u‖ = ‖z − x, z − u‖ = ‖x− y, x− z‖.
Proof. Let u = x+y+z

3 . By Lemma 2.2, we have

‖x− y, x− u‖ = ‖x− y, x− x + y + z

3
‖ = ‖x− y,

2x− y − z

3
‖

=
1
|3|‖x− y, 2x− y − z‖ = ‖x− y, 2x− y − z‖

= ‖x− y, x− z‖,
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‖y − z, y − u‖ = ‖y − z, y − x + y + z

3
‖ = ‖y − z,

2y − x− z

3
‖

=
1
|3|‖y − z, 2y − x− z‖ = ‖y − z, 2y − x− z‖

= ‖y − z, y − x‖ = ‖x− y, x− z‖,
and

‖z − x, z − u‖ = ‖z − x, z − x + y + z

3
‖ = ‖z − x,

2z − x− y

3
‖

=
1
|3|‖z − x, 2z − x− y‖ = ‖z − x, 2z − x− y‖

= ‖z − x, z − y‖ = ‖x− y, x− z‖.
For the uniqueness of u, assume that we have another v ∈ X satisfying

‖x− y, x− v‖ = ‖y − z, y − v‖ = ‖z − x, z − v‖ = ‖x− y, x− z‖.
From the hypothesis |2| = 1 of this lemma, we have

‖x− y,
x− u

2
‖ = ‖x− y,

x− v

2
‖ = ‖x− y, x− z‖.

Therefore, we have

‖x− y, x− u + v

2
‖ ≤ max{‖x− y,

x− u

2
‖, ‖x− y,

x− v

2
‖}

= max{‖x− y, x− u‖, ‖x− y, x− v‖}
= ‖x− y, x− z‖ .(2.1)

Similarly we obtain that

‖y − z, y − u + v

2
‖ ≤ ‖x− y, x− z‖,(2.2)

‖z − x, z − u + v

2
‖ ≤ ‖x− y, x− z‖.(2.3)

On the other hand,

‖x− y, z − u + v

2
‖ = ‖y − z + z − x, z − u + v

2
‖

≤ max{‖y − z, z − u + v

2
‖, ‖z − x, z − u + v

2
‖}

= max{‖y − z, y − u + v

2
‖, ‖z − x, z − u + v

2
‖}

≤ ‖x− y, x− z‖.
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If all the inequalities (2.1), (2.2) and (2.3) were strict, then

‖x− y, x− z‖ ≤ max{‖x− y, x− u + v

2
‖, ‖x− y, z − u + v

2
‖}

� ‖x− y, x− z‖
which is a direct contradiction. So at least one of equalities in (2.1),
(2.2) and (2.3) must hold.

We now have three cases. Firstly we are going to consider the case
which holds the equality in (2.1). Thus we have

‖x− y, x− u + v

2
‖ = max{‖x− y,

x− u

2
‖, ‖x− y,

x− v

2
‖}.

By the strict convexity, we obtain that

x− u

2
=

x− v

2
.

Therefore u = v.
In the remaining cases, we have the parallel proof as in the first case.

This completes the proof.

Theorem 2.4. Let X and Y be non-Archimedean 2-normed spaces
over a non-Archimedean field K with |2| = |3| = 1 such that Y is strictly
convex. Let f : X → Y be a 2-isometry and g(x) := f(x)− f(0). Then

g

(
x + y + z

3

)
=

g(x) + g(y) + g(z)
3

for all x, y and z in X with ‖x− y, x− z‖ 6= 0, that is, the barycenter of
triangle is g-invariant.

Proof. Let g(x) = f(x)−f(0) as above. Then we can easily show that
g is also a 2-isometry and g(0) = 0. Let x, y, z ∈ X with ‖x−y, x−z‖ 6= 0.
Since g is a 2-isometry, we have

‖g(x)− g(y), g(x)− g

(
x + y + z

3

)
‖ = ‖x− y, x− x + y + z

3
‖

= ‖x− y,
2x− y − z

3
‖

= ‖x− y, 2x− y − z‖
= ‖x− y, x− z‖
= ‖g(x)− g(y), g(x)− g(z)‖
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and similarly we can obtain

‖g(y)− g(z), g(y)− g

(
x + y + z

3

)
‖ = ‖g(x)− g(y), g(x)− g(z)‖

‖g(z)− g(x), g(z)− g

(
x + y + z

3

)
‖ = ‖g(x)− g(y), g(x)− g(z)‖.

By Lemma 2.3

g

(
x + y + z

3

)
=

g(x) + g(y) + g(z)
3

,

for all x, y, z ∈ X .

Remark 2.5. Using the above theorem, we can show that g is K-
linear [3], that is, f is affine. As a consequence of Theorem 2.4, we can
obtain the Mazur–Ulam theorem in non-Archimedean 2-normed spaces,
as well; it is noteworthy that our version of the Mazur–Ulam theorem
comes from the invariance of the barycenter of a triangle, without the
assumption of collinearity.
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