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ISOMETRIES IN PROBABILISTIC 2-NORMED SPACES

F. Rahbarnia*, Yeol Je Cho**, R. Saadati***, and Gh.
Sadeghi*

Abstract. The classical Mazur–Ulam theorem states that every
surjective isometry between real normed spaces is affine. In this
paper, we study 2-isometries in probabilistic 2-normed spaces.

1. Introduction

The theory of isometries mappings had its beginning in the classical
paper [16] by Mazur and Ulam, who proved that every isometry of a
real normed vector space onto another real normed vector space is a
linear mapping up to translation. This property is not true for normed
complex vector spaces, i.e., the conjugation on C. The hypothesis of
surjectiveness is essential. Without this assumption, Baker proved that
every isometry from a real normed space into a strictly convex normed
space is affine mapping [3]. Recently, Chu proved the Mazur–Ualm
theorem on linear 2-normed spaces [6]. In this paper, we investigated
the Mazur–Ualm theorem on probabilistic 2-normed spaces.

Let X and Y be metric spaces. A mapping f : X → Y is called an
isometry if f satisfies

dY (f(x), f(y)) = dX(x, y), ∀x, y ∈ X,

where dX(·, ·) and dY (·, ·) denote the metrics in the metric spaces X
and Y , respectively. For some fixed number r > 0, suppose that f
preserves distance r, i.e., for all x, y ∈ X with dX(x, y) = r implies
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dY (f(x), f(y)) = r. Then r is called a conservative (or preserved) dis-
tance for the mapping f .

Aleksandrov [1] posed the following problem:
Whether the existence of a single conservative distance for

some mapping T implies that T is an isometry.

The isometric problems have been investigated in several papers (see
[3, 7, 8, 10, 13, 15, 16, 18, 21, 22, 24, 28]).

Menger [17] introduced the notion of a probabilistic metric space in
1942. Since then, the theory of probabilistic metric spaces has been
developed in many directions (see [2, 4, 25]). The idea of Menger was
to use distribution functions as values of a meter instead of nonnega-
tive real numbers. We shall adopt the usual terminology, notation and
conventions of the theory of probabilistic Menger normed spaces as in
[19, 25, 26].

Throughout this paper, the space of all probability distribution func-
tions (briefly, d.f.’s) is denoted by ∆+. A function F : R → [0, 1] is
called a distribution function if it is non-decreasing and left continuous
with supx∈R F (x) = 1 and infx∈R F (x) = 0. The space ∆+ is partially
ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and
only if F (t) ≤ G(t) for all t in R. The maximal element for ∆+ in this
order is the d.f. given by

ε0(t) =

{
0 if t ≤ 0,

1 if t > 0.

The class of all distribution functions F with F (0) = 0 is denoted by
D+.

Definition 1.1. ([25]) A mapping T : [0, 1] × [0, 1] → [0, 1] is a
continuous triangular norm (briefly, a t–norm) if T satisfies the following
conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Two typical example of continuous t–norm are T (a, b) = ab and
T (a, b) = min(a, b). A triangle function τ is a binary operation on D+

which is commutative, associative and for which ε0 is the identity, i.e,,
τ(F, ε0) = F for all F ∈ D+.
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Definition 1.2. A probabilistic 2-normed space (briefly, P2N-space)
is a triple (X , µ, τ), where X is a vector space of a dimension greater
than one, τ is a triangle function and µ is a mapping from X × X into
D+ such that the following conditions hold: for all x, y in X,

(P2N1) µx,y = ε0 if x and y are linearly dependent;
(P2N2) µx,y 6= ε0 if x and y are linearly independent;
(P2N3) µx,y = µy,x;
(P2N4) µαx,y(t) = µx,y( t

|α|) for all α ∈ R with α 6= 0;

(P2N5) µx+y,z ≥ τ(µx,z, µy,z) for all x, y, z ∈ X .

Now, we will give an enlargement of the notion of probabilistic 2-
normed space by generalizing the axiom which given a connection be-
tween the distribution functions of vector and its product by a real
number [12].

Let ϕ be a function defined on the real field R into itself with the
following properties:

(1) ϕ(−t) = ϕ(t) for all t ∈ R;
(2) ϕ(1) = 1;
(3) ϕ is strict increasing and continuous on [0,∞), ϕ(0) = 0 and

limt→∞ ϕ(t) = ∞.

Examples of such function are ϕ(t) = |t|, ϕ(t) = |t|p for all p ∈ (0,∞)
and ϕ(t) = 2t2n

|t|+1 for all n ∈ N.

Definition 1.3. Let X be a vector space of a dimension greater than
one, τ is a triangle function and µ is a mapping from X into D+. If
the condition (P2N1), (P2N2), (P2N3) and (P2N5) are satisfied and the
condition (P2N4) is replaced by

(P2N4′) µαx,y(t) = µx,y( t
ϕ(α)) for all α ∈ R with α 6= 0,

then the triple (X , µ, τ) is called a probabilistic ϕ-2-normed space.

We recall that a 2-normed space is a pair (X , ‖·, ·‖), where X is a
linear space of a dimension greater than one and (‖·, ·‖)is a real valued
mapping on X × X such that

(N1) ‖x, y‖ = 0 if and only if x, y are linearly dependent;
(N2) ‖x, y‖ = ‖y, x‖;
(N3) ‖rx, y‖ = |r|‖x, y‖ for all r ∈ R and x, y ∈ X );
(N4) the triangle inequality

‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖, ∀x, y, z ∈ X.
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If the conditions (N1), (N2) and (N4) are satisfied and the condition
(N3) is replaced by

(N3′) ‖rx, y‖ = ϕ(r)‖x, y‖, ∀r ∈ R, x, y ∈ X ,
then the pair (X , ‖., ‖) is called a ϕ-2-normed space.

For more details on 2-normed spaces, see the books ([5, 9]).

Remark 1.4. It is easy to check that every ϕ-2-normed space (X , ‖·, ·‖)
can be made a probabilistic ϕ-2-normed space, in a natural way, by set-
ting µx,y(t) = ε0(t−‖x, y‖) for all x, y ∈ X and t ∈ R and τT ((F,G)(t) =
supt1+t2<t T (F (t1), G(t2)) for all t > 0 with T = Min.

Definition 1.5. ([6]) Let X and Y be probabilistic ϕ-2-normed spaces
and f : X → Y be a mapping. Then f is called a 2-isometry if

µx−z,y−z = µf(x)−f(z),f(y)−f(z), ∀x, y, z ∈ X .

In this paper, we investigate 2-isometries in probabilistic ϕ 2-normed
spaces.

2. Main results

First, we give some lemmas for our main results in this paper.

Lemma 2.1. Let (X , µ, τ) be a probabilistic ϕ-2-normed space. Then
µx,y = µx,y+γx for all x, y ∈ X and γ ∈ R.

Proof. Let x, y ∈ X . Then we have

µx,y+γx ≥ τ(µx,y, µx,γx) = τ(µx,y, ε0) = µx,y(2.1)

and

µx,y = µx,y+γx−γx ≥ τ(µx,y+γx, µx,−γx)
= µx,y+γx.(2.2)

Thus conclusion follows from inequalities (2.1) and (2.2).

Definition 2.2. Let X be a real linear space and x, y, z be mutually
disjoint elements of X . Then the elements x, y, z are said to be collinear
if x− y = α(x− z) for some α ∈ R.

Lemma 2.3. Let (X , µ, τ) be a real probabilistic ϕ-2-normed space
and let x, y ∈ X . Then x+y

2 is the unique member u ∈ X satisfying

µx−z,x−u(t) = µy−u,y−z(t) = µx−z,y−z

( t

ϕ(1
2)

)
, ∀t ∈ R

for some z ∈ X with µx−z,y−z 6= ε0 and collinear elements u, x, y ∈ X .
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Proof. Set u = x+y
2 . Then the elements u, x, y ∈ X are collinear. By

Lemma 2.1, we have

µx−z,x−u(t) = µx−z,x−x+y
2

(t) = µx−z, x−y
2

(t)

= µx−z,x−y

( t

ϕ(1
2)

)
= µx−z,y−z

( t

ϕ(1
2)

)
.

Similarly, we have

µy−z,y−u(t) = µy−z,y−x+y
2

(t) = µy−z, y−x
2

(t)

= µy−z,y−x

( t

ϕ(1
2)

)
= µx−z,y−z

( t

ϕ(1
2)

)
.

Now, we show the uniqueness u ∈ X . Assume that v ∈ X is another
element satisfying

µx−z,x−v = µy−v,y−z = µx−z,y−z

for some z ∈ X with µx−z,y−z 6= ε0 and collinear elements v, x, y ∈ X .
Since v, x, y are collinear, there exists a real number r such that v =
rx + (1− r)y. In view of Lemma 2.1, we obtain

µx−z,y−z

( t

ϕ(1
2)

)
= µx−z,x−v(t) = µx−z,(1−r)(x−y)(t)

= µx−z,x−y

( t

ϕ(1− r)

)

= µx−z,y−z

( t

ϕ(1− r)

)
.

Similarly, we have

µx−z,y−z

( t

ϕ(1
2)

)
= µy−v,y−z(t) = µy−(rx+(1−r)y),y−z(t)

= µr(y−x),y−z(t) = µy−x,y−z

( t

ϕ(r)

)

= µx−z,y−z

( t

ϕ(r)

)
.

Hence it follows that

µx−z,y−z

( t

ϕ(1− r)

)
= µx−z,y−z

( t

ϕ(r)

)
.

Since µx−z,y−z(t) 6= ε0, we have t
ϕ(1−r) = t

ϕ(r) and so r = 1
2 . Therefore,

u = v. This completes the proof.
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Theorem 2.4. Let (X , µ, τ) and (Y, µ, τ) be real probabilistic ϕ-
2-normed spaces. Assume that a mapping f : X → Y is such that
f(x), f(y) and f(z) are collinear in Y when x, y and z are collinear in
X . If a mapping f : X → Y is a 2-isometry, then f − f(0) is linear.

Proof. Let g(x) = f(x)− f(0). Then g is a 2-isometry and g(0) = 0.
Let x, y ∈ X with x 6= y. Since dimX > 1, there exists an element
z ∈ X such that µx−z,y−z 6= 0. Since g is a 2-isometry, we have

µg(x)−g(z),g(x)−g(x+y
2 )(t) = µx−z,x−x+y

2
(t)

= µx−z, x−y
2

(t)

= µx−z,x−y

( t

ϕ(1
2)

)
= µx−z,y−z

( t

ϕ(1
2)

)

= µg(x)−g(z),g(y)−g(z)

( t

ϕ(1
2)

)
, ∀x, y ∈ X .

Similarly, we can obtain

µg(x)−g(x+y
2

),g(y)−g(z))(t) = µy−x+y
2

,y−z(t)

= µx−y
2

,y−z(t)

= µy−x,y−z

( t

ϕ(1
2)

)
= µx−z,y−z

( t

ϕ(1
2)

)

= µg(x)−g(z),g(y)−g(z)

( t

ϕ(1
2)

)
, ∀x, y ∈ X .

Since x+y
2 , x and y collinear, g

(x+y
2

)
, g(x) and g(y) are also collinear.

It follows from Lemma 2.3 that

g

(
x + y

2

)
=

g(x) + g(y)
2

, ∀x, y ∈ X .

Hence g = f − f(0) is additive since g(0) = 0.
Letting r ∈ R+ with r 6= 1 and x ∈ X , 0, x and rx become collinear,

then g(0), g(x) and g(rx) are collinear. Since g(0) = 0, there exists a
real number k such that g(rx) = kg(x). Because dimX > 1, there exists
an element y ∈ X such that µx,y 6= ε0. Thus we have

µx,y

( t

ϕ(r)

)
= µrx,y(t)

= µrx−0,y−0(t)
= µg(rx)−g(0),g(y)−g(0)(t)
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= µg(rx),g(y)(t) = µkg(x),g(y)(t)

= µg(x),g(y)

( t

ϕ(k)

)
= µg(x)−g(0),g(y)−g(0)

( t

ϕ(k)

)

= µx,y

( t

ϕ(k)

)

and so ϕ(r) = ϕ(k). If k > 0, then r = k. Assume that k < 0.
Since ϕ(k) = ϕ(−k), then r = −k and so g(rx) = −rg(x). Since r is a
positive real number, there are positive rational numbers p, q such that
p < r < q. Since dimX > 1, there exists an element z ∈ X such that
µrx−qx,z−qx 6= ε0.

Now, we have

µg(x),g(z)−g(qx)

( t

ϕ(r + q)

)
= µrg(x)+qg(x),g(z)−g(qx)(t)

= µ−g(rx)+g(qx),g(z)−g(qx)(t)
= µrx−qx,z−qx(t)

= µx,z−qx(
t

ϕ(q − r)
)

≥ µx,z−qx

( t

ϕ(q − p)

)

= µqx−px,z−qx(t)
= µg(qx)−g(px),g(z)−g(qx)(t)
= µqg(x)−pg(x),g(z)−g(qx)(t)

= µg(x),g(z)−g(qx)

( t

ϕ(q − p)

)
.

Since µrx−qx,z−qx 6= ε0, we have

µg(rx)−g(qx),g(z)−g(qx) = µ(r−q)g(x),g(z)−g(qx) 6= ε0

and

µg(x),g(z)−g(qx) 6= ε0.

Therefore, we have t
ϕ(r+q) ≥ t

ϕ(q−p) , which is a contradiction. So k = r,
that is, g(rx) = rg(x) for all positive real number r.

Now, we show that g(−x) = −g(x). For all x ∈ X , since we have

µg(x),g(−x) = µg(−x)−g(0),g(0)−g(x) = µ−x,−x = ε0,
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then there exists a real number k such that g(x) = kg(−x). And also
we have

µx,y

( t

ϕ(k)

)
= µg(x),g(y)

( t

ϕ(k)

)
= µkg(−x),g(y)

( t

ϕ(k)

)

= µg(−x),g(y)

( t

ϕ(k)2
)

= µx,y

( t

ϕ(k)2
)
.

So, we have ϕ(k) = ϕ(k)2 and thus k = ±1. If k = 1, then, for all x ∈ X ,
we obtain 0 = g(0) = g(x − x) = 2g(x) since g is an additive mapping,
which is a contradiction. So, k = 1, that is, g(−x) = −g(x). Hence, for
all real number r, g(rx) = rg(x). This completes the proof.

Remark 2.5. Let X and Y be real ϕ-2-normed spaces and f : X → Y
be a 2-isometry, i.e., ‖f(x)− f(z), f(y)− f(z)‖ = ‖x− z, y − z‖ for all
x, y, z ∈ X . Then, by Remark 1.4 and Theorem 2.4, f − f(0) is linear.

3. Aleksandrov problems

Let (X , µ, τ) and (Y, µ, τ) be P2N-spaces and f : X → Y be a map-
ping. We say that f has the area one preserving property (AOPP) if

µx−z,y−z = ε1, ∀x, y, z ∈ X ,

implies that
µf(x)−f(z),f(y)−f(z) = ε1.

Proposition 3.1. Let (X , µ, τ) and (Y, µ, τ) be P2N-spaces. As-
sume that, if x, y and z are collinear in X , then f(x), f(y) and f(z) are
collinear in Y, where f : X → Y is a mapping. Let f be injective and
satisfies (AOPP). Then f preserves the area n for all n ∈ N, (i.e., if
µx−z,y−z = νn, then µf(x)−f(z),f(y)−f(z) = νn in which (R, ν, τ) is a real
PN-space).

Proof. Let x, y, z ∈ X and let n ∈ N. Let µx−z,y−z = νn and xi =
x + i

n(y − x) for all i = 0, 1, · · · , n. Then we have

µx−z,xi+1−xi(t) = µx−z,x+ i+1
n

(y−x)−(x+ i
n

(y−x)(t)

= µx−z, 1
n

(y−x)(t) = µx−z,y−x(
t

n
)

= νn(
t

n
) = ν1(t), ∀i = 0, 1, 2, · · · , n.
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Thus we have

µf(x)−f(z),f(xi+1)−f(xi) = ν1, ∀i = 0, 1, 2, · · · , n.

Since x0, x1 and x2 are collinear, f(x0), f(x1) and f(x2) are also collinear.
Hence there is a real number r such that f(x2)−f(x1) = r(f(x1)−f(x0)).

On the other hand, we have

µf(x)−f(z),f(x1)−f(x0)(t) = µf(x)−f(z),f(x2)−f(x1)(t)
= µf(x)−f(z),r(f(x1)−f(x0))(t)

= µf(x)−f(z),f(x1)−f(x0)

( t

|r|
)

and so r = ±1. If r = −1, then f(x2) − f(x1) = −f(x1) + f(x0), that
is, f(x2) = f(x0). Since f is injective, x2 = x0, which is a contradiction.
Thus r = 1. Hence we have

f(x2)− f(x1) = f(x1)− f(x0).

Similarly, one can obtain

f(xi+1)− f(xi) = f(xi)− f(xi−1), ∀i = 0, 1, 2, · · · , n.

Therefore, it follows that

f(xi+1)− f(xi) = f(x1)− f(x0), ∀i = 0, 1, 2, · · · , n

and hence

f(y) − f(x) = f(xn)− f(x0)
= f(xn)− f(xn−1) + f(xn−1)− f(xn−2) + · · ·+ f(x1)− f(x0)
= n(f(x1)− f(x0)).

Therefore, we have

µf(x)−f(z),f(y)−f(x)(t) = µf(x)−f(z),n(f(x1)−f(x0))(t)

= µf(x)−f(z),f(x1)−f(x0)(
t

n
) = ν1(

t

n
)

= νn(t).

This completes the proof.
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