• Title/Summary/Keyword: Maximum net work

Search Result 72, Processing Time 0.021 seconds

A Comparative Study on Using SentiWordNet for English Twitter Sentiment Analysis (영어 트위터 감성 분석을 위한 SentiWordNet 활용 기법 비교)

  • Kang, In-Su
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.317-324
    • /
    • 2013
  • Twitter sentiment analysis is to classify a tweet (message) into positive and negative sentiment class. This study deals with SentiWordNet(SWN)-based twitter sentiment analysis. SWN is a sentiment dictionary in which each sense of an English word has a positive and negative sentimental strength. There has been a variety of SWN-based sentiment feature extraction methods which typically first determine the sentiment orientation (SO) of a term in a document and then decide SO of the document from such terms' SO values. For example, for SO of a term, some calculated the maximum or average of sentiment scores of its senses, and others computed the average of the difference of positive and negative sentiment scores. For SO of a document, many researchers employ the maximum or average of terms' SO values. In addition, the above procedure may be applied to the whole set (adjective, adverb, noun, and verb) of parts-of-speech or its subset. This work provides a comparative study on SWN-based sentiment feature extraction schemes with performance evaluation on a well-known twitter dataset.

Thermal-fluid-structure coupling analysis on plate-type fuel assembly under irradiation. Part-II Mechanical deformation and thermal-hydraulic characteristics

  • Li, Yuanming;Ren, Quan-yao;Yuan, Pan;Su, Guanghui;Yu, Hongxing;Zheng, Meiyin;Wang, Haoyu;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1556-1568
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect stress conditions, mechanical behaviors and thermal-hydraulic performance of the fuel assembly. This paper is the Part II work of a two-part study devoted to analyzing the complex unique mechanical deformation and thermal-hydraulic characteristics for the typical plate-type fuel assembly under irradiation effect, which is on the basis of developed and verified numerical thermal-fluid-structure coupling methodology under irradiation in Part I of this work. The mechanical deformation, thermal-hydraulic performance and Mises stress have been analyzed for the typical plate-type fuel assembly consisting of support plates under non-uniform irradiation. It was interesting to observe that: the plate-type fuel assembly including the fuel plates and support plates tended to bend towards the location with maximum fission rate; the hot spots in the fuel foil appeared at the location with maximum thickness increment; the maximum Mises stress of fuel foil was located at the adjacent location with the maximum plate thickness increment et al.

Comparison of plan dosimetry on multi-targeted lung radiotherapy: A phantom-based computational study using IMRT and VMAT

  • Khan, Muhammad Isa;Rehman, Jalil ur;Afzal, Muhammad;Chow, James C.L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3816-3823
    • /
    • 2022
  • This work analyzed the dosimetric difference between the intensity modulated radiotherapy (IMRT), partial/single/double-arc volumetric modulated arc therapy (PA/SA/DA-VMAT) techniques in treatment planning for treating more than one target of lung cancer at different isocenters. IMRT and VMAT plans at different isocenters were created systematically using a Harold heterogeneous lung phantom. The conformity index (CI), homogeneity index (HI), gradient index (GI), dose-volume histogram and mean and maximum dose of the PTV were calculated and analyzed. Furthermore, the dose-volume histogram and mean and maximum doses of the OARs such as right lung, contralateral lung and non GTV were determined from the plans. The IMRT plans showed the superior target dose coverage, higher mean and maximum values than other VMAT techniques. PA-VMAT technique shows more lung sparing and DA-VMAT increases the V5/10/20 values of contralateral lung than other VMAT and IMRT techniques. The IMRT technique achieves highly conformal dose distribution to the target than other VMAT techniques. Comparing to the IMRT plans, the higher V5/10/20 and mean lung dose were observed in the contralateral lung in the DA-VMAT.

External dose assessment for workers dismantling the bio-shield of a commercial power nuclear reactor: Case study of Kori-1, Korea

  • Lee, ChoongWie;Lee, Donghyun;Kim, Hee Reyoung;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2085-2091
    • /
    • 2020
  • The license for Kori-1, the first commercial reactor in Busan, Korea, was terminated in June 2017; therefore, preparations are being made for its decommissioning. Because the radioactivity of Bio-shield varies greatly throughout the structure, the doses received by the workers depend on the location, order, and duration of dismantling operations. Thus, a model for evaluating the worker external dose during the dismantling of the Kori-1 bio-shield was developed, and work scenarios for dose assessment were designed. The Dose evaluation code VISIPLAN was used for dose assessment. The dose rate around the bio-shield was evaluated and the level of exposure to the operator was evaluated according to the work scenario. The maximum annual external dose was calculated as 746.86 mSv for a diamond wire saw operator under dry cutting conditions, indicating that appropriate protective measures, such as changing dismantling sequence, remote monitoring, shield installation, and adjustment of work team are necessary for the safe dismantling of the bio-shield. Through these protective measures, it was found that the worker's dose could be below the dose limit.

Evaluation of dose received by workers while repairing a failed spent resin mixture treatment device

  • Choi, Woo Nyun;Byun, Jaehoon;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.442-448
    • /
    • 2022
  • Intermediate-level radioactive waste (ILW) is not subject to legal approval for cave disposal in Korea. To solve this problem, a spent resin treatment device that separates 14C-containing resin from zeolite/activated carbon and desorbs 14C through a microwave device has been developed. In this study, we evaluated the radiological safety of the operators performing repair work in the event of a failure in such a device treating 1 ton of spent resin mixture per day. Based on the safety evaluation results, it is possible to formulate a design plan that can ensure the safety of workers while developing a commercialized device. When each component of the resin treatment device can be repaired from the outside, the maximum and minimum allowable repair times are calculated as 263.2 h and 27.7 h for the 14C-detached resin storage tank and zeolite/activated carbon storage tank, respectively. For at least 6 h per quarter, the worker's annual dose limit remains within 50 mSv/year; further, over 5 years, it remained within 100 mSv. At least 6 h of repair time per quarter is considered, under conservative conditions, to verify the radiological safety of the worker during repair work within that time.

A Basic Study on Securing Welfare Space in Crew Accommodation for Fishers Working in Coastal and Inshore Fisheries (연근해 어선원 복지 공간 확보를 위한 기초 연구)

  • KIM, Ki-Sun;HAN, Se-Hyun;CHO, Jang-Won
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.811-821
    • /
    • 2017
  • This paper intends to propose the direction for improving the welfare space in crew accommodation of fishing vessels engaged in coastal and inshore fishery business in order to solve the phenomenon which young fishers trend to avoid working on fishing vessels. Coastal and inshore fisheries are defined as permitted fisheries business under the Fisheries Act and classified into coastal fisheries and inshore fisheries based on a gross tonnage of 10 tons. Fisheries Act also stipulates the upper limit tonnage regulation and the restrictions on bottoms of fishing vessels permitted for coastal and inshore fisheries to protect fishery resources and to prevent overfishing. It is difficult to increase the welfare space in crew accommodation of fishers under such restrictions because the welfare space in crew accommodation could be secured by reducing the space for the strength of fishing. Therefore, this paper compares the revision trend of the international convention(The Work in Fishing Convention, 2007) and domestic laws on welfare space in crew accommodation of fishing vessels engaged in coastal and inshore fishery business to find out the problems and improvement points in securing the welfare space in crew accommodation of fishing vessels. As a result, it is proposed to revise the Enforcement Ordinance of the Fisheries Act so as to secure the welfare space in crew accommodation of coastal and inshore fishing vessels within the scope of maintaining the maximum allowable tonnage limit regulation by adding an exemption provisions of the restrictions on bottoms of fishing vessels in which case the gross tonnage is increased for securing the spaces for crew accommodation and sanitary facilities of fishers without increasing net tonnage where the bottoms of fishing vessels is increased by renovating or replacing the fishing vessels bigger than the bottoms of fishing vessels permitted within the scope of maintaining the maximum allowable tonnage limit regulation.

Maneuvering Target Tracking Using Error Monitoring

  • Fang, Tae-Hyun;Park, Jae-Weon;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.329-334
    • /
    • 1998
  • This work is concerned with the problem of tracking a maneuvering target. In this paper, an error monitoring and recovery method of perception net is utilized to improve tracking performance for a highly maneuvering tar-get. Many researches have been performed in tracking a maneuvering target. The conventional Interacting Multiple Model (IMM) filter is well known as a suboptimal hybrid filter that has been shown to be one of the most cost-effective hybrid state estimation scheme. The subfilters of IMM can be considered as fusing its initial value with new measurements. This approach is also shown in this paper. Perception net based error monitoring and recovery technique, which is a kind of geometric data fusion, makes it possible to monitor errors and to calibrate possible biases involved in sensed data and extracted features. Both detecting a maneuvering target and compensating the estimated state can be achieved by employing the properly implemented error monitoring and recovery technique. The IMM filter which employing the error monitoring and recovery technique shows good tracking performance for a highly maneuvering target as well as it reduces maximum values of estimation errors when maneuvering starts and finishes. The effectiveness of the pro-posed method is validated through simulation by comparing it with the conventional IMM algorithm.

  • PDF

Three-Dimensional Image Reconstruction from Compton Scattered Data Using the Row-Action Maximum Likelihood Algorithm (행작용 최대우도 알고리즘을 사용한 컴프턴 산란 데이터로부터의 3차원 영상재구성)

  • Lee, Mi-No;Lee, Soo-Jin;Nguyen, Van-Giang;Kim, Soo-Mee;Lee, Jae-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.56-65
    • /
    • 2009
  • Compton imaging is often recognized as a potentially more valuable 3-D technique in nuclear medicine than conventional emission tomography. Due to inherent computational limitations, however, it has been of a difficult problem to reconstruct images with good accuracy. In this work we show that the row-action maximum likelihood algorithm (RAMLA), which have proven useful for conventional tomographic reconstruction, can also be applied to the problem of 3-D reconstruction of cone-beam projections from Compton scattered data. The major advantage of RAMLA is that it converges to a true maximum likelihood solution at an order of magnitude faster than the standard expectation maximiation (EM) algorithm. For our simulations, we first model a Compton camera system consisting of the three pairs of scatterer and absorber detectors placed at x-, y- and z-axes, and generate conical projection data using a software phantom. We then compare the quantitative performance of RAMLA and EM reconstructions in terms of the percentage error. The net conclusion based on our experimental results is that the RAMLA applied to Compton camera reconstruction significantly outperforms the EM algorithm in convergence rate; while computational costs of one iteration of RAMLA and EM are about the same, one iteration of RAMLA performs as well as 128 iterations of EM.

A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles

  • Jian, Xiaobin;Kong, Xiangzhe;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1575-1588
    • /
    • 2019
  • Fracture near the U-10Mo/cladding material interface impacts fuel service life. In this work, a mesoscale stress model is developed with the fuel foil considered as a porous medium having gas bubbles and bearing bubble pressure and surface tension. The models for the evolution of bubble volume fraction, size and internal pressure are also obtained. For a U-10Mo/Al monolithic fuel plate under location-dependent irradiation, the finite element simulation of the thermo-mechanical coupling behavior is implemented to obtain the bubble distribution and evolution behavior together with their effects on the mesoscale stresses. The numerical simulation results indicate that higher macroscale tensile stresses appear close to the locations with the maximum increments of fuel foil thickness, which is intensively related to irradiation creep deformations. The maximum mesoscale tensile stress is more than 2 times of the macroscale one on the irradiation time of 98 days, which results from the contributions of considerable volume fraction and internal pressure of bubbles. This study lays a foundation for the fracture mechanism analysis and development of a fracture criterion for U-10Mo monolithic fuels.

Prediction of golden time for recovering SISs using deep fuzzy neural networks with rule-dropout

  • Jo, Hye Seon;Koo, Young Do;Park, Ji Hun;Oh, Sang Won;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4014-4021
    • /
    • 2021
  • If safety injection systems (SISs) do not work in the event of a loss-of-coolant accident (LOCA), the accident can progress to a severe accident in which the reactor core is exposed and the reactor vessel fails. Therefore, it is considered that a technology that provides recoverable maximum time for SIS actuation is necessary to prevent this progression. In this study, the corresponding time was defined as the golden time. To achieve the objective of accurately predicting the golden time, the prediction was performed using the deep fuzzy neural network (DFNN) with rule-dropout. The DFNN with rule-dropout has an architecture in which many of the fuzzy neural networks (FNNs) are connected and is a method in which the fuzzy rule numbers, which are directly related to the number of nodes in the FNN that affect inference performance, are properly adjusted by a genetic algorithm. The golden time prediction performance of the DFNN model with rule-dropout was better than that of the support vector regression model. By using the prediction result through the proposed DFNN with rule-dropout, it is expected to prevent the aggravation of the accidents by providing the maximum remaining time for SIS recovery, which failed in the LOCA situation.