DOI QR코드

DOI QR Code

A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles

  • Jian, Xiaobin (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University) ;
  • Kong, Xiangzhe (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University) ;
  • Ding, Shurong (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University)
  • Received : 2019.01.25
  • Accepted : 2019.04.10
  • Published : 2019.09.25

Abstract

Fracture near the U-10Mo/cladding material interface impacts fuel service life. In this work, a mesoscale stress model is developed with the fuel foil considered as a porous medium having gas bubbles and bearing bubble pressure and surface tension. The models for the evolution of bubble volume fraction, size and internal pressure are also obtained. For a U-10Mo/Al monolithic fuel plate under location-dependent irradiation, the finite element simulation of the thermo-mechanical coupling behavior is implemented to obtain the bubble distribution and evolution behavior together with their effects on the mesoscale stresses. The numerical simulation results indicate that higher macroscale tensile stresses appear close to the locations with the maximum increments of fuel foil thickness, which is intensively related to irradiation creep deformations. The maximum mesoscale tensile stress is more than 2 times of the macroscale one on the irradiation time of 98 days, which results from the contributions of considerable volume fraction and internal pressure of bubbles. This study lays a foundation for the fracture mechanism analysis and development of a fracture criterion for U-10Mo monolithic fuels.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. D.B. Lee, K.H. Kim, C.K. Kim, Thermal compatibility studies of unirradiated U Mo alloys dispersed in aluminum, J. Nucl. Mater. 250 (1997) 79-82. https://doi.org/10.1016/S0022-3115(97)00252-3
  2. M.K. Meyer, G.L. Hofman, S.L. Hayes, et al., Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel, J. Nucl. Mater. 304 (2002) 221-236. https://doi.org/10.1016/S0022-3115(02)00850-4
  3. J. Park, K. Kim, C. Kim, et al., The irradiation behavior of atomized U-Mo alloy fuels at high temperature, Met. Mater. Int. 7 (2001) 151-157. https://doi.org/10.1007/BF03026953
  4. J. Jue, H.P. Blair, C.R. Clark, et al., Fabrication of monolithic RERTR fuels by hot isostatic pressing, Nucl. Technol. 2 (2010) 204-210.
  5. A.B. Robinson, D. Wachs, D.E. Burkes, US RERTER Fuel development post irradiation examination results, in: Proceedings of the 30th International Meeting on Reduced Enrichment for Research and Test reactors,Washington, DC, 2008.
  6. F. Rice, W. Williams, A. Robinson, et al., RERTR-12 Post-irradiation Examination Summary Report, Idaho National Laboratory, 2015.
  7. M.K. MEYER, J. GAN, J.F. JUE, et al., Irradiation performance of u-mo monolithic fuel, Nucl. Eng. Technol. 46 (2014) 169-182. https://doi.org/10.5516/NET.07.2014.706
  8. D.M. Dowling, R.J. White, M.O. Tucker, The effect of irradiation-induced resolution on fission gas release, J. Nucl. Mater. 1 (1982) 37-46.
  9. Y.S. Kim, G.L. Hofman, Fission product induced swelling of UeMo alloy fuel, J. Nucl. Mater. 419 (2011) 291-301. https://doi.org/10.1016/j.jnucmat.2011.08.018
  10. A.M. Casella, D.E. Burkes, P.J. MacFarlan, et al., Characterization of fission gas bubbles in irradiated U-10Mo fuel, Mater. Char. 131 (2017) 459-471. https://doi.org/10.1016/j.matchar.2017.06.007
  11. J. Jue, D.D. Keiser, B.D. Miller, et al., Effects of irradiation on the interface between U-Mo and zirconium diffusion barrier, J. Nucl. Mater. 499 (2018) 567-581. https://doi.org/10.1016/j.jnucmat.2017.10.072
  12. D. Salvato, A. Leenaers, S. Van den Berghe, et al., Pore pressure estimation in irradiated UMo, J. Nucl. Mater. 510 (2018) 472-483. https://doi.org/10.1016/j.jnucmat.2018.08.039
  13. J.L. Schulthess, W.R. Lloyd, B. Rabin, et al., Mechanical properties of irradiated U Mo alloy fuel, J. Nucl. Mater. 515 (2019) 91-106. https://doi.org/10.1016/j.jnucmat.2018.12.025
  14. G.Y. Jeong, Y.S. Kim, Y.J. Jeong, et al., Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel, J. Nucl. Mater. 502 (2018) 331-348. https://doi.org/10.1016/j.jnucmat.2018.02.028
  15. S. Hu, A.M. Casella, C.A. Lavender, et al., Assessment of effective thermal conductivity in U-Mo metallic fuels with distributed gas bubbles, J. Nucl. Mater. 462 (2015) 64-76. https://doi.org/10.1016/j.jnucmat.2015.03.039
  16. D.E. Burkes, A.M. Casella, A.J. Casella, et al., Thermal properties of U-Mo alloys irradiated to moderate burnup and power, J. Nucl. Mater. 464 (2015) 331-341. https://doi.org/10.1016/j.jnucmat.2015.04.040
  17. D.E. Burkes, D.J. Senor, A.M. Casella, A model to predict failure of irradiated U-Mo dispersion fuel, Nucl. Eng. Des. 310 (2016) 48-56. https://doi.org/10.1016/j.nucengdes.2016.09.032
  18. Y. Cui, Y. Huo, S. Ding, et al., An analytical solution for simulation of the fission gas behaviors with time-dependent piece-wise boundary resolution, J. Nucl. Mater. 424 (2012) 109-115. https://doi.org/10.1016/j.jnucmat.2012.02.010
  19. J. Rest, A model for the effect of the progression of irradiation-induced recrystallization from initiation to completion on swelling of UO2 and Ue10Mo nuclear fuels, J. Nucl. Mater. 346 (2005) 226-232. https://doi.org/10.1016/j.jnucmat.2005.06.012
  20. J. Spino, J. Rest, W. Goll, et al., Matrix swelling rate and cavity volume balance of UO2 fuels at high burn-up, J. Nucl. Mater. 346 (2005) 131-144. https://doi.org/10.1016/j.jnucmat.2005.06.015
  21. G.K. Miller, D.E. Burkes, D.M. Wachs, Modeling thermal and stress behavior of the fueleclad interface in monolithic fuel mini-plates, Mater. Des. 31 (2010) 3234-3243. https://doi.org/10.1016/j.matdes.2010.02.016
  22. F. Yan, Y. Zhao, S. Ding, Effect of fuel meat thickness on the non-uniform irradiation-induced thermo-mechanical behavior in monolithic UMo/Al fuel plates, in: Proceedings of the 25th International Conference on Nuclear Engineering, ICONE25, Shanghai, China, 2017.
  23. H. Ozaltun, M.H. Herman Shen, P. Medvedev, Assessment of residual stresses on U10Mo alloy based monolithic mini-plates during Hot Isostatic Pressing, J. Nucl. Mater. 419 (2011) 76-84. https://doi.org/10.1016/j.jnucmat.2011.08.029
  24. Y.S. Kim, G.L. Hofman, J.S. Cheon, et al., Fission induced swelling and creep of UeMo alloy fuel, J. Nucl. Mater. 437 (2013) 37-46. https://doi.org/10.1016/j.jnucmat.2013.01.346
  25. S.J. Miller, H. Ozaltun, Evaluation of U10Mo fuel plate irradiation behavior via numerical and experimental benchmarking, in: Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition IMECE2012 November 9-15, Houston, Texas, USA, 2012.
  26. M.V. Speight, Nucl. Sci. Eng. 180 (1969).
  27. N. Ramakrishnan, V.S. Arunachalam, Effective elastic moduli of porous solids, J. Mater. Sci. 25 (1990) 3930-3937. https://doi.org/10.1007/BF00582462
  28. J. Rest, Y.S. Kim, G.L. Hofman, et al., U-mo Fuels Handbook, Argonne National Laboratory Report ANL-09/31, Chicago, Illinois, 2009.
  29. Y. Cui, S. Ding, Z. Chen, et al., Modifications and applications of the mechanistic gaseous swelling model for UMo fuel, J. Nucl. Mater. 457 (2015) 157-164. https://doi.org/10.1016/j.jnucmat.2014.11.065
  30. S. Hu, W. Setyawan, V.V. Joshi, et al., Atomistic simulations of thermodynamic properties of Xe gas bubbles in U10Mo fuels, J. Nucl. Mater. 490 (2017) 49-58. https://doi.org/10.1016/j.jnucmat.2017.04.016
  31. Y. Zhao, X. Gong, Y. Cui, et al., Simulation of the fission-induced swelling and creep in the CERCER fuel pellets, Mater. Des. 89 (2016) 183-195. https://doi.org/10.1016/j.matdes.2015.09.135
  32. X. Kong, X. Tian, F. Yan, et al., Thermo-mechanical behavior simulation coupled with the hydrostatic-pressure-dependent grain-scale fission gas swelling calculation for a monolithic UMo fuel plate under heterogeneous neutron irradiation, Open Eng. 8 (2018) 243-260. https://doi.org/10.1515/eng-2018-0029
  33. H. Ozaltun, R.M. Allen, Y.H. Han, Effects of thickness of Zirconium liner on stress-strain characteristics of U10Mo monolithic plates, in: Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition IMECE2013 November 15-21, San Diego, California, USA, 2013.
  34. Y.S. Kim, G.L. Hofman, J.S. Cheon, Recrystallization and fission-gas-bubble swelling of U-Mo fuel, J. Nucl. Mater. 436 (2013) 14-22. https://doi.org/10.1016/j.jnucmat.2013.01.291
  35. J. Gan, B.D. Miller, D.D. Keiser, et al., Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density, J. Nucl. Mater. 492 (2017) 195-203. https://doi.org/10.1016/j.jnucmat.2017.05.035
  36. J. Jue, D.D. Keiser, C.R. Breckenridge, et al., Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier, J. Nucl. Mater. 448 (2014) 250-258. https://doi.org/10.1016/j.jnucmat.2014.02.004
  37. J. Spino, A.D. Stalios, H. Santa Cruz, et al., Stereological evolution of the rim structure in PWR-fuels at prolonged irradiation: dependencies with burn-up and temperature, J. Nucl. Mater. 354 (2006) 66-84. https://doi.org/10.1016/j.jnucmat.2006.02.095
  38. D.E. Burkes, R. Prabhakaran, T. Hartmann, et al., Properties of DU-10wt% Mo alloys subjected to various post-rolling heat treatments, Nucl. Eng. Des. 240 (2010) 1332-1339. https://doi.org/10.1016/j.nucengdes.2010.02.008
  39. D.E. Burkes, R. Prabhakaran, J. Jue, et al., Mechanical properties of DU-xMo alloys with x = 7 to 12 weight percent, Metall. Mater. Trans. 40 (2009) 1069-1079. https://doi.org/10.1007/s11661-009-9805-5
  40. D. Kim, K. Bae, H. Lee, et al., Finite element simulation of creep crack growth using combined plastic-creep damage model, Procedia Structural Integrity 2 (2016) 825-831. https://doi.org/10.1016/j.prostr.2016.06.106
  41. X. Du, Z. Jie, L. Yinghua, Plastic failure analysis of defective pipes with creep damage under multi-loading systems, Int. J. Mech. Sci. 128-129 (2017) 428-444. https://doi.org/10.1016/j.ijmecsci.2017.04.028
  42. J.F. Mao, J.W. Zhu, S.Y. Bao, et al., Creep deformation and damage behavior of reactor pressure vessel under core meltdown scenario, Int. J. Press. Vessel. Pip. 139-140 (2016) 107-116. https://doi.org/10.1016/j.ijpvp.2016.03.009

Cited by

  1. Effects of U-Mo Irradiation Creep Performance on the Thermo-Mechanical Coupling Behavior in U-Mo/Al Monolithic Fuel Assemblies vol.9, 2021, https://doi.org/10.3389/fenrg.2021.676881