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a b s t r a c t

If safety injection systems (SISs) do not work in the event of a loss-of-coolant accident (LOCA), the ac-
cident can progress to a severe accident in which the reactor core is exposed and the reactor vessel fails.
Therefore, it is considered that a technology that provides recoverable maximum time for SIS actuation is
necessary to prevent this progression. In this study, the corresponding time was defined as the golden
time. To achieve the objective of accurately predicting the golden time, the prediction was performed
using the deep fuzzy neural network (DFNN) with rule-dropout. The DFNN with rule-dropout has an
architecture in which many of the fuzzy neural networks (FNNs) are connected and is a method in which
the fuzzy rule numbers, which are directly related to the number of nodes in the FNN that affect
inference performance, are properly adjusted by a genetic algorithm. The golden time prediction per-
formance of the DFNN model with rule-dropout was better than that of the support vector regression
model. By using the prediction result through the proposed DFNN with rule-dropout, it is expected to
prevent the aggravation of the accidents by providing the maximum remaining time for SIS recovery,
which failed in the LOCA situation.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

When a loss-of-coolant accident (LOCA), which is a design basis
accident, occurs in nuclear power plants (NPPs), safety injection
systems (SISs) operate to cool the reactor core and secure a shut-
down margin through the injection of high-concentration boric
acid water. However, if SISs do not operate in time during an ac-
cident, the core cooling capability is lost, which can lead to a severe
accident in which reactor core uncovery and reactor vessel (RV)
damage occur. Even if SISs are not normally activated at the
beginning of an accident, reactor core uncovery and RV damage can
be prevented by recovering the SISs in time during an accident.
Therefore, to prevent the progression to a severe accident caused by
a LOCA, a technique to predict the time for SIS recovery is consid-
ered necessary if SISs do not normally operate in an accident sit-
uation. In this study, the time mentioned above is defined as the
golden time, that is, themaximum available time for SIS recovery to
by Elsevier Korea LLC. This is an
prevent reactor core uncovery and RV failure when SISs fail to
operate at the beginning after LOCA occurrence. If the SIS is
restored and normally operating within the golden time, the core
uncovery and RV failure can be prevented.

The golden time was predicted using support vector regression
(SVR) in a previous study [1]. In this study, a deep fuzzy neural
network (DFNN) with rule-dropout is used to predict the golden
time. DFNN is a method in which syllogistic fuzzy reasoning
through multi-connected modules of fuzzy neural networks
(FNNs) is simplified, and its performance is generally affected by
the number of FNNmodules and the nodes in the FNN. DFNN with
rule-dropout used in this paper is a method in which the number
of fuzzy rules for each FNN module is optimized to improve the
performance of the existing DFNN [2e4]. The simulated data
applied to develop the DFNN model with rule-dropout were ac-
quired using the modular accident analysis program (MAAP) [5].
The MAAP code is a software tool that is used for accident
sequence analysis in a referenced plant where an assumed acci-
dent scenario is applied, and presents an accident behavior as
numerical values. In this study, the scenarios in which SISs do not
operate at the initial time after LOCA occurrence in the optimized
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pressurized reactor 1000 (OPR-1000) were postulated, and the
simulated data for the corresponding circumstance were obtained
and processed.

Many studies, such as break size estimation [6,7] RV water level
prediction [8], and leak flow prediction [9] have been conducted to
provide accident information to the operator and reduce human
error using artificial intelligence (AI) methods in LOCA situations.
Likewise, this study for golden time prediction was carried out for
the same purpose. Therefore, the objective of this study is to
develop a model that can help prevent a design-based accident
situation from progressing to a severe accident by accurately pre-
dicting the SIS recovery time. In this paper, Section 2 describes the
characteristics, training, and optimization of the DFNN with rule-
dropout. Section 3 describes the postulated accident scenarios for
data acquisition, data preprocessing, and model development. In
Section 4, the prediction result of the DFNN with rule-dropout is
presented and compared to the prediction performance of SVR of
the previous study. Finally, Section 5 presents a summary and
conclusions, as well as an assessment of the effectiveness of the
DFNN with rule-dropout.

2. Deep fuzzy neural networks with rule-dropout

2.1. Rule-dropout

The main goal of this study is to develop a model with accurate
prediction performance that can contribute to accident mitigation in
theeventof LOCAs inNPPs. Toachieve thisgoal, theoptimal algorithm
should be selected from the data to be applied. In general, the efficacy
of machine learning algorithms depends on its inherent characteris-
tics; thus, a specific algorithm cannot be the best for all kinds of data.
To select the optimal algorithm from the data to be applied, the data
shouldbe applied directly to all algorithms.However, because it takes
a lot of time to apply the data to all algorithms, the applicable one is
selected by preferentially applying several algorithms that are suit-
able for the applied data based on the characteristics of each
algorithm.

Hence, as an AI technology, a method based on the existing
DFNN was used. Although high-level prediction performance,
which can be considered suitable for a domain, was derived from
the existing DFNN model in previous studies [2e3], appropriate
results were not always shown for all domains [4]. One of the
reasons for this is that an optimal network structure is not
deterministic according to the target domain or applied data.
Therefore, we applied a dropout concept to DFNN so that the
detailed structure of the existing DFNN can be properly adjusted
during training to configure an optimal model in a domain to be
applied. The DFNN with rule-dropout was used in the previous
study to predict the internal states of the NPP containment [10].
This method showed better performance than the existing DFNN
when predicting hydrogen concentration and containment
pressure in LOCA situations.

The rule-dropout applied to DFNN in this study, which is similar
to the dropout implemented in deep learning, can be explained as a
method for preventing overfitting by controlling the number of
nodes in the network that affects fuzzy inference performance. In
general, dropout is a technique that randomly skips neurons with a
specific probability during neural network training to prevent
overfitting [11]. The skipped neurons are then temporarily deacti-
vated in the neural network during training. Then, when the test is
performed, the skipped neurons are revived, and theweight of each
neuron is multiplied by the retained probability of each neuron to
derive thefinal output value. Namely, thismethod prevents neurons
from excessive co-adaptation during training [11].

Rule-dropout is a method for optimizing the number of fuzzy
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rules in an FNN module, which is the basic structure of DFNN.
Specifically, the number of fuzzy rules to be deactivated is selected
within the maximum number of fuzzy rules in an FNN module
during training. The maximum number of fuzzy rules is the same
for each module. In rule-dropout, the fuzzy rules to be deactivated
are determined through a genetic algorithm (GA) [12]. The GA se-
lects specific fuzzy rules considered inappropriate. When an FNN
module is added, the nodes for the fuzzy rules to be activated are
configured, and the nodes to be deactivated are removed. Unlike
the dropout of deep learning, the nodes that are deactivated by
rule-dropout are not reactivated and are permanently removed
even in the test process. The optimal fuzzy rule number adjusted by
the rule-dropout is the same as or different from each FNNmodule.
Although the higher the number of fuzzy rules, the more in-depth
fuzzy inference is possible; however, a model can be vulnerable to
overfitting concurrently. Therefore, the rule-dropout characteristics
allow performance to be improved gradually as it passes through
the configured modules.

2.2. DFNN with rule-dropout

The existing DFNN, which is a fundamental architecture of the
proposed DFNN with rule-dropout, has a structure in which more
than two FNN modules are connected in series based on syllogistic
fuzzy reasoning. That is, an inference result from the preceding step
with an immediate connection is transmitted into the present step
as an extra input. Because of this characteristic in the existing DFNN,
high-level inference performance can be produced based on a
relatively simplified syllogistic fuzzy inference [13]. The final output
of the existing DFNN is calculated by using both initial inputs, and
one additional input gradually improved through each added
module; that is, the output of the final module determined in the
latter part becomes the final result. These characteristics of the
existing DFNN are inherited by the DFNNmodel with rule-dropout.

However, as mentioned above, the DFNN with rule-dropout is
that the network structure of each module is severally adjusted,
which is different from the existing DFNN. Because the FNNmodules
in the existing DFNN have the same fuzzy rule number, the nodes for
n rules are equally configured in every module. Furthermore, fuzzy
if-then operations are performed for all fuzzy rules in each module.
However, in DFNN with rule-dropout, the nodes of the specific rules
determined to be inappropriate among all n fuzzy rules are dropped;
thus, the internal structure of each FNN module may be different or
the same. Accordingly, the fuzzy inference operation is performed
only on the surviving fuzzy rules. Eqs. (1) and (2) represent fuzzy if-
then operations for the fuzzy rules activated in the existing DFNNand
DFNN with rule-dropout, respectively;

for an arbitray i� th rule in the first module8<
:

If x1ðkÞ is Að1Þ
i1 ðx1ðkÞ Þ AND / AND xmðkÞ is Að1Þ

im ðxmðkÞ Þ;

then byð1ÞðkÞ is fiðx1ðkÞ;/; xmðkÞ Þ
for an arbitray i� th rule from the 2nd to g � th module8>>>>><
>>>>>:

If x1ðkÞ is AðgÞ
i1 ðx1ðkÞ Þ AND / AND xmðkÞ is AðgÞ

im ðxmðkÞ Þ

AND byðg�1ÞðkÞ is AðgÞ
iðmþ1Þ

�
xðmþ1ÞðkÞ

�
;

then byðgÞðkÞ is fi
�
x1ðkÞ;/; xmðkÞ; byðg�1ÞðkÞ �

(1)

where x1; x2;/; xm are input variables, Ai1;Ai2;/;Aim are the
membership functions of all the inputs for the i-th fuzzy rule
ði¼ 1; 2; /; nÞ in the FNN module, by is the output of each FNN
module, fi is the consequent for the i-th fuzzy rule, and k indicates
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the time instant of the applied data. byðg�1Þ, which is the (mþ1)-th
input, is an additional input for the i-th fuzzy rule from the second
to the final g-th module.

Fig. 1 shows the structure of the proposed DFNN with rule-
dropout in this study. In Fig. 1, the dotted squares and circles
represent the nodes and their connections to the fuzzy rule drop-
ped by rule-dropout, while the solid lines denote the maintained
ones. In the existing DFNN, all of the nodes are depicted as solid
squares, circles, and connecting lines without dotted shapes. In Eq.
(2), the (n-1)-th fuzzy rule in the second module and the n-th fuzzy
rule in the g-th module are deactivated, as shown in Fig. 1:

in the 2ndmodule8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

If x1ðkÞ is Að2Þ
11 ðx1ðkÞÞ AND/ AND xmðkÞ is Að2Þ

1mðxmðkÞÞ

AND byð1ÞðkÞ is Að2Þ
1ðmþ1Þ

�
xðmþ1ÞðkÞ

�
;

then byð2ÞðkÞ is f1�x1ðkÞ;/;xmðkÞ;byð1ÞðkÞ�
«

If x1ðkÞ is Að2Þ
ðn�2Þ1ðx1ðkÞÞAND/ AND xmðkÞ is Að2Þ

ðn�2ÞmðxmðkÞÞ

AND byð1ÞðkÞ is Að2Þ
ðn�2Þðmþ1Þ

�
xðmþ1ÞðkÞ

�
;

then byð2ÞðkÞ is fðn�2Þ
�
x1ðkÞ;/;xmðkÞ;byð1ÞðkÞ�

If x1ðkÞ is Að2Þ
n1 ðx1ðkÞÞ AND/ AND xmðkÞ is Að2Þ

nmðxmðkÞÞ

AND byð1ÞðkÞ is Að2Þ
nðmþ1Þ

�
xðmþ1ÞðkÞ

�
;

then byð2ÞðkÞ is fn�x1ðkÞ;/;xmðkÞ;byð1ÞðkÞ�
«

in the g� thmodule8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

If x1ðkÞ is AðgÞ
11 ðx1ðkÞÞAND/ AND xmðkÞ is AðgÞ

1mðxmðkÞÞ

AND byðg�1ÞðkÞ is AðgÞ
1ðmþ1Þ

�
xðmþ1ÞðkÞ

�
;

then byðgÞðkÞ is f1�x1ðkÞ;/;xmðkÞ;byðg�1ÞðkÞ�
If x1ðkÞ is AðgÞ

21 ðx1ðkÞÞAND/ AND xmðkÞ is AðgÞ
2mðxmðkÞÞ

AND byðg�1ÞðkÞ is AðgÞ
2ðmþ1Þ

�
xðmþ1ÞðkÞ

�
;

then byðgÞðkÞ is f2�x1ðkÞ;/;xmðkÞ;byðg�1ÞðkÞ�
«

If x1ðkÞ is AðgÞ
ðn�1Þ1ðx1ðkÞÞAND/ AND xmðkÞ is AðgÞ

ðn�1ÞmðxmðkÞÞ

AND byðg�1ÞðkÞ is AðgÞ
ðn�1Þðmþ1Þ

�
xðmþ1ÞðkÞ

�
;

then byðgÞðkÞ is fðn�1Þ
�
x1ðkÞ;/;xmðkÞ;byðg�1ÞðkÞ�

(2)

The number of fuzzy rules in DFNNwith rule-dropout is severally
adjusted in each FNN module to obtain high-level prediction per-
formance while avoiding overfitting. To elicit high prediction per-
formance through fuzzy rule operation, a five-layer network with a
Takagi-Sugeno-type fuzzy inference system [14] is implemented in
the FNNmodules of DFNNwith rule-dropout (refer to Fig.1). The first
layer in the five-layer FNN consists of nodes in which a membership
function for fuzzy inference is defined. The results for each fuzzy rule
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are generated in the fourth layer. Finally, the final output of a single
FNN module is calculated in the fifth layer.
2.3. Optimization of DFNN with rule-dropout

In addition to the fuzzy rule number, the parameters of each
FNN module were optimized during the training for high-level
prediction accuracy of the DFNN with rule-dropout used in this
study. After the training was completed, the optimal number of
modules was determined among the total configured modules, and
then the model comprised of the optimal number of FNN modules
was tested. The optimization procedure of the DFNN with rule-
dropout is shown in Fig. 2. Once an FNN module is added, the
fuzzy rule number and themembership function parameters cij and
sij are determined by the GA [12] for optimal fuzzy inference in each
module. The membership function is expressed in the form of a
Gaussian function as follows:

Aij
�
xjðkÞ

�¼ e
�ðxjðkÞ�cijÞ2

2sij
2 (3)

where cij and sij are the center position and sharpness of the
membership function, respectively.

The GA optimizes parameters to be suitable for a problem to be
solved through the evolutionary process of an organism. Optimi-
zation through GA in DFNN with rule-dropout includes the process
of generating and evolving populations of chromosomes that
include the candidates for the parameters (e.g., number of fuzzy
rules, cij, and sij) through genetic operation for multiple genera-
tions, and the process of evaluating each candidate and selecting
the fittest solution using a fitness function. During the training of
the DFNN model with rule-dropout, the candidate chromosome
with the highest value among all the candidate chromosomes with
the scores calculated through the fitness function is finally selected
as the optimal solution in a single FNNmodule. The fitness function
that evaluates the suitability of the FNN parameters in this study is
as follows:

Ftr ¼ e�ðaEtþbEt;maxþ aðEv�EtÞþbðEv;max�Et;maxÞÞ

constraints
�
aðEv � EtÞ ¼ 0; if Ev < Et
b
�
Ev;max � Et;max

� ¼ 0; if Ev;max < Et;max

(4)

where

Et¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nt

XNt

k¼1

�
yðkÞ�byðkÞ

yðkÞ �100
�2

vuut ;

Et;max¼max
k

����yðkÞ�byðkÞ
yðkÞ �100

����;k¼1;2;/;Nt ;

Ev¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nv

XNv

k¼1

�
yðkÞ�byðkÞ

yðkÞ �100
�2

vuut ;

Ev;max¼max
k

����yðkÞ�byðkÞ
yðkÞ �100

����;k¼1;2;/;Nv:

a and b are the weighting coefficients for errors in the training
and validation data, respectively. Additionally, Nt and Nv are the
number of training and validation data, respectively.



Fig. 1. Structure of the DFNN with rule-dropout.

Fig. 2. Optimization procedure of the DFNN model with rule-dropout.
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The output of each module is calculated by summing all the rule
outputs fi. Here, fi is the consequent value for each fuzzy rule
4017
mentioned in Eq. (1) or (2), and is generally defined as a first-order
polynomial of the inputs, as shown in Eq. (5).
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fiðx1ðkÞ; x2ðkÞ;/; xmðkÞÞ¼
Xm
j¼1

qijxjðkÞ þ ri (5)

where qij and ri are the weight values and bias, respectively. From
the second to the g-th module, the (mþ1)-th input is added to Eq.
(5).

The least-squares method is a standard method that minimizes
the sum of squared errors. Therefore, qij and ri in Eq. (5) were
determined to minimize the error between the predicted and real
values, as defined in the objective function of Eq. (6).

J ¼ 1
2

XNt

l¼1

�
ylðkÞ � bylðkÞ�2 (6)

where ylðkÞ is a targeted output value and bylðkÞ is a predicted
output value.

All the FNN modules are optimized using the GA and least-
squares methods. During training, the module identification pro-
cess progresses using another fitness function of Eq. (7):

Fall ¼ e�ðm1Eaþm2Ea;maxÞ (7)

where m1 and m2 are the weighting values for the root mean square
(RMS) andmaximum errors, respectively. Ea and Ea;max are the RMS
and maximum errors for the development data, which consist of
the training and validation data, respectively.

Module identification involves a process in which the fitness
value from Eq. (7) of the present FNN module is compared with
those of all the preceding FNN modules. When the number of FNN
modules reaches the maximum module number, the training for
the model construction is terminated. The maximum number of
FNN modules is set to 15 in this study. After then, the optimal
number of FNN modules is determined to construct the optimal
DFNN model with rule-dropout. This optimal number is deter-
mined such that the fitness value of the present FNN module
calculated using Eq. (7) is greater than that of all the preceding
modules and is less than 95% of the highest fitness value. The final
fitness value is less than 95% of the highest fitness value so that it
reduces the number of FNN modules for the final optimal DFNN
with rule-dropout. That is, it is to prevent an excessive stack of FNN
modules.

3. Data preparation

3.1. Accident scenario

The scenarios selected to predict the golden time are the
postulated hot- and cold-leg LOCA scenarios when SISs do not
normally function. To simulate an accident using the MAAP [5]
code, the break sizewas divided into 270 cases from 1/10,000 of the
double-ended guillotine break (DEGB) to the DEGB. In addition, it is
assumed that high-pressure safety injection (HPSI) and low-
pressure safety injection (LPSI) do not operate at the beginning of
the accident, but are actuated late, and the safety injection tank and
containment spray system operate normally. If the pressure of the
reactor coolant system does not fall below the maximum discharge
pressure of the pump, the boric acid water is not injected even if the
LPSI operates. In the case of a small break size, the pressure is not
lower than the maximum discharge pressure of the pump; hence,
the pressurizer power-operated relief valve (PORV) was set to be
opened when LPSI was delayed.
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3.2. Data acquisition

MAAP is the software used for simulating a postulated accident
and analyzing the sequence of an accident; thus, the trend of a
number of process variables according to the elapsed time of an
accident can be presented in numerical values. The data for the
golden time prediction obtained fromMAAP are the simulated data
for seven days after the accident occurrence, and consist of 16
process variables related to the reactor coolant system, contain-
ment, and steam generator. The delay operation times of the HPSI
and LPSI were changed according to the interval of 10 s for each
break size to find the maximum delayed operation time that does
not cause core uncovery or RV failure. That is, the maximum
delayed operation time (i.e., the golden time) is the maximum
available time for SIS recovery so that core uncovery or RV failure
does not occurs in LOCA situations. The simulated accident sce-
narios were classified into four cases according to HPSI and LPSI
operations in the hot- and cold-leg LOCAs, as shown in Table 1, and
a total of 1080 simulated data were acquired.

3.3. Data preprocessing

Data preprocessing for developing a golden time prediction
model involves input variable selection, data classification, and
data standardization. The input variables were selected according
to their relationship to reactor core integrity and heat removal
among the 16 variables acquired through the MAAP code simula-
tions. Table 2 lists the selected input variables. The data for the
training are reorganized into time-integrated data from the reactor
trip to a specific time among the simulated data according to the
sequence of accidents (refer to Eq. (8)). Specifically, the integral
ranges in this study were 30, 60, or 150 s after the reactor trip.

xjðkÞ¼
Z tsþDt

ts
gjðtÞdt (8)

where gjðtÞ is a simulated input signal, ts is the reactor trip time,
and Dt is the integration time span.

To effectively learn and verify the DFNN model with rule-
dropout, the entire datasets were divided into training, validation,
and test datasets. In each simulated accident case, the validation
and test datasets corresponded to 10% of the entire datasets, and
the training dataset accounted for 80% of all datasets. First, the test
dataset was extracted from all the datasets according to the
designated intervals. The training dataset was then extracted using
the subtractive clustering (SC) method [15]. SC is a clustering al-
gorithm that selects a cluster center based on the potential of a data
point. This method calculates the potential for each data point and
selects the data point with the highest potential as the center of the
first clustering. The equation for obtaining the potential in the SC is
as follows:

P1ðtÞ¼
Xm
j¼1

e�
4kxt�xjk2

ra2 ; t ¼ 1;2;/;m (9)

where ra is a cluster radius, xt and xj are data points for the
remaining datasets, except for the test dataset.

In general, the potential value of each data point is revised based
on the center and maximum potential value of the i-th clustering
using Eq. (10). Likewise, after the i-th cluster is selected, the data
point corresponding to the highest potential value among the
modified potential values is selected as the (iþ1)-th clustering



Table 1
Simulated accident scenario cases.

Case Break position PRZ PORV HPSI operation LPSI operation No. of data

1 Hot-leg Close Delay injection & recirculation N/A 270
2 Open N/A Delay injection & recirculation 270
3 Cold-leg Close Delay injection & recirculation N/A 270
4 Open N/A Delay injection & recirculation 270

PRZ, Pressurizer; PORV, Power-operated relief valve; HPSI, High-pressure safety injection; LPSI, Low-pressure safety injection.

Table 2
Input variables for DFNN with rule-dropout.

No. Input variable

1 Core exit temperature
2 Pressure in containment
3 Pressurizer pressure
4 Pressurizer water level
5 Collapsed water level
6 Unbroken side steam generator water temperature
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center. When the modified potential values are determined, those
for the data points near the i-th cluster center are significantly
reduced, and the corresponding data points are less likely to be
selected as the (iþ1)-th clustering center.

Piþ1ðtÞ¼ Pi � Pce
�4kxt�xck2

rb
2 ; t ¼ 1;2;/;m (10)

where rb is the penalty radius for limiting the number of clusters to
be created. xc is the center of the i-th clustering, and Pc is the po-
tential value of xc.

The clustering center selection is repeated until the number of
cluster centers is equal to the number of training data. Finally, the
remaining data belong to the validation dataset after the test, and
the training datasets are selected from among all the data.

Before distributing the datasets, the data were normalized to a
normal distribution with a mean of 0 and a variance of 1. Stan-
dardization was used to prevent the model from being biased to
specific data during training. The standardization equation is as
follows:

z¼ x� x
s

(11)

where x is the input value, x is the mean value of the input values,
and s is the standard deviation.
Fig. 3. Variation of RMS error and fitness values depending on the number of FNN
modules (golden time prediction to prevent core uncovery in cases 2 and 4).
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4. Golden time prediction result for SIS recovery

4.1. Golden time prediction result using DFNN model with rule-
dropout

The golden time prediction for SIS recovery was performed
using the optimal DFNN model with rule-dropout established
through the model optimization process. The characteristic of the
DFNN with rule-dropout is that as the FNN module and the fuzzy
rule number increase, a deeper fuzzy inference is possible, and the
performance is gradually improved. Fig. 3 shows this characteristic;
specifically, it shows that as the FNN module is added, the RMS
error decreases and the fitness value increases when predicting the
golden time to prevent core uncovery in cases 2 and 4. That is, it can
be seen that the performance progressively improves as the num-
ber of FNN modules is optimally set. In the developed DFNN model
with rule-dropout, the fuzzy rule number optimized for each FNN
module was between two and three when predicting the golden
time for core uncovery prevention, and between three and four
when predicting the golden time for RV failure prevention. This is
because it was possible to accurately predict the golden time using
the DFNN model with rule-dropout with only a small number of
fuzzy rules in each applied domain, and overfitting occurred when
a number of fuzzy rules were used.

Tables 3 and 4 show the results of predicting the golden time to
prevent core uncovery and RV failure in all accident cases (i.e., cases
1e4 in Table 1). The DFNN with rule-dropout shows RMS errors
within approximately 2.8% and maximum errors within approxi-
mately 8% for the test data when the HPSI operation is delayed in
the LOCA (cases 1 and 3), respectively. In the case that LPSI oper-
ation is delayed (cases 2 and 4), RMS and maximum errors are
within approximately 2.3% and 12% for the test data, respectively.
Errors for prediction of the golden time to prevent RV failure are
relatively higher than those for prediction of the golden time to
prevent core uncovery. This is because the prediction error was
comparatively higher in the smaller break size cases among the
total break sizes. Specifically, in the data for the smaller LOCA break
sizes, the change in the input values of the preprocessed data is
small, but the predicted values fluctuate significantly; hence, it is
difficult to predict accurately. Figs. 4e7 show the prediction results
of the golden time to prevent core uncovery and RV failure for each
accident case by using the DFNN model with rule-dropout.
4.2. Comparison of prediction results of DFNN with rule-dropout
and SVR model

The golden time prediction performance of the proposed DFNN
model with rule-dropout was comparedwith that of the SVRmodel
used in a previous study [1]. SVR is a method based on the principle
of structural risk minimization, which minimizes the upper limit
for generalization errors rather than minimizing training errors; it
maps input data to a high-dimensional feature space through a
kernel function and determines the optimal regression function in
the feature space [16]. The SVR model to be compared in the study



Table 3
Prediction performance of DFNN model with rule-dropout (HPSI delay).

Scenario Prevention target No. of FNN modules Training data Validation data Test data

RMS error (%) Max. error (%) RMS error (%) Max. error (%) RMS error (%) Max. error (%)

Hot-leg LOCA (case 1) Core uncovery 8 1.705 5.265 2.251 5.057 2.784 6.688
RV failure 12 3.659 26.475 0.566 1.023 1.878 7.405

Cold-leg LOCA (case 3) Core uncovery 9 1.915 9.310 1.383 2.550 2.003 4.608
RV failure 4 2.809 16.395 1.027 2.493 2.183 8.141

FNN, Fuzzy neural network; RMS, Root mean squares; LOCA, Loss-of-coolant accident; RV, Reactor vessel.

Table 4
Prediction performance of DFNN model with rule-dropout (LPSI delay).

Scenario Prevention target No. of FNN modules Training data Validation data Test data

RMS error (%) Max. error (%) RMS error (%) Max. error (%) RMS error (%) Max. error (%)

Hot-leg LOCA (case 2) Core uncovery 4 0.827 2.093 0.564 1.039 0.950 1.959
RV failure 5 0.912 5.314 0.521 1.035 2.373 11.756

Cold-leg LOCA (case 4) Core uncovery 7 0.269 1.011 0.272 0.573 0.667 1.969
RV failure 7 1.221 7.001 0.741 2.135 1.856 7.334

Fig. 4. Golden time prediction result to prevent core uncovery in case 1 using the
DFNN model with rule-dropout.

Fig. 5. Golden time prediction result to prevent core uncovery in case 2 using the
DFNN model with rule-dropout.

Fig. 6. Golden time prediction result to prevent RV failure in case 3 using the DFNN
model with rule-dropout.

Fig. 7. Golden time prediction result to prevent RV failure in case 4 using the DFNN
model with rule-dropout.
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only has the same structure and features as the SVRmodel used in a
previous study [1]. However, the applied data and input variables
are not the same as those in the previous study [1], but are the same
4020
as the data applied to the DFNN model with rule-dropout in the
present study.

Tables 5 and 6 show the results of predicting the golden time



Table 5
Prediction performance of SVR model (HPSI delay).

Scenario Prevention
target

Training data Validation
data

Test data

RMS
error
(%)

Max.
error
(%)

RMS
error
(%)

Max.
error
(%)

RMS
error
(%)

Max.
error
(%)

Hot-leg LOCA (case 1) Core
uncovery

0.621 2.854 1.957 4.648 2.947 4.936

RV failure 7.336 82.357 0.576 1.250 1.957 7.137
Cold-leg LOCA (case 3) Core

uncovery
0.136 0.270 0.397 0.789 2.748 8.101

RV failure 0.966 12.559 0.401 1.084 9.260 37.431

Table 6
Prediction performance of SVR model (LPSI delay).

Scenario Prevention
target

Training data Validation data Test data

RMS
error
(%)

Max.error
(%)

RMS
error
(%)

Max.error
(%)

RMS
error
(%)

Max.error
(%)

Hot-leg
LOCA

(case 2)

Core
uncovery

0.033 0.042 1.056 1.877 4.573 10.970

RV failure 8.829 69.499 0.595 1.003 10.774 43.203
Cold-leg

LOCA
(case 4)

Core
uncovery

0.235 1.355 0.377 0.937 3.000 8.566

RV failure 1.229 15.105 0.923 3.028 8.818 43.952
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using the SVR model. SVR has a feature that shows excellent
generalization performance with only a small amount of data;
however, in this study, it did not show high prediction performance
in all cases. When predicting the golden time to prevent core
uncovery, the proposed DFNN with rule-dropout shows better
performance compared to the SVR. Also, when predicting the
golden time to prevent RV failure, the proposed DFNN model with
rule-dropout shows much lower RMS and maximum errors than
the SVR model. The reason why the prediction performance of the
DFNN model with rule-dropout is much better than that of the SVR
model in the golden time prediction for RV failure prevention is
considered to be a difference in the learning mechanism between
the DFNN with rule-dropout and the SVR model. That is, unlike the
learning mechanism of the SVR model, the DFNN model with rule-
dropout can be accurately predicted because it derives the final
output value throughmulti-stage learning. Multi-stage learning is a
method that performs syllogistic fuzzy reasoning by using the
result from the preceding step as an additional input for the present
step with the addition of the FNN module. In addition, as the
training time of the SVRmodel increases exponentially according to
the number of training data, it takes slightly longer to train [16].

5. Conclusions

In this study, the DFNNmodel with rule-dropout was developed
to predict the golden time for SIS recovery when the SISs failed in
the initial phase in the LOCA situations. To develop the DFNNmodel
with rule-dropout, the input values in the initial time after a reactor
trip, and input variables related to reactor core integrity and heat
removal in the simulated data acquired through MAAP were
applied. GA and rule-dropout techniques were used to establish the
optimal model by optimizing the FNN parameters and fuzzy rule
4021
numbers during training. Although the prediction performance of
the developed DFNN model with rule-dropout was slightly lower
than that of the SVR model in a few cases, it showed much better
prediction performance, especially when predicting the golden
time to prevent RV failure. The developed DFNN model with rule-
dropout can accurately predict the golden time for accident miti-
gation in LOCA situations; therefore, it is considered that it can be
utilized as a technology to alleviate accidents. Consequently, if the
golden time for SIS recovery is provided when the SIS does not
work in the LOCAs, the operator will be able to recognize the
necessary information and act to recover the SIS in time.
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