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Abstract

This work is concerned with the problem of tracking a
maneuvering target. In this paper, an error monitoring
and recovery method of perception net is utilized to im-
prove tracking performance for a highly maneuvering tar-
get. Many researches have been performed in tracking a
maneuvering target. The conventional Interacting Mul-
tiple Model (IMM) filter is well known as a suboptimal
hybrid filter that has been shown to be one of the most
cost-effective hybrid state estimation scheme. The subfil-
ters of IMM can be considered as fusing its initial value
with new measurements. This approach is also shown in
this paper. Perception net based error monitoring and
recovery technique, which is a kind of geometric data fu-
sion, makes it possible to monitor errors and to calibrate
possible biases involved in sensed data and extracted fea-
tures. Both detecting a maneuvering target and compen-
sating the estimated state can be achieved by employing
the properly implemented error monitoring and recovery
technique. The IMM filter which employing the error
monitoring and recovery technique shows good tracking
performance for a highly maneuvering target as well as
it reduces maximum values of estimation errors when ma-
neuvering starts and finishes. The effectiveness of the pro-
posed method is validated through simulation by compar-
ing it with the conventional IMM algorithm.

1. Introduction

The problem of tracking a maneuvering target has re-
ceived a great deal of attention. Many researches have
been performed in tracking a maneuvering target. Since
Singer [1] proposed a target model including maneuver-
ing motion in 1970, many researches have been performed
in tracking a maneuvering target. We can outline tech-
niques representative of two general approaches to ma-
neuver adaptive filtering. The first approach is to detect
maneuver and cope with maneuver. For this approach,
Bogler [2] and Whang, et. al.[3] proposed a input esti-
mation filter, Bar-Shalom, et. al.[4] proposed a variable
dimension filter, and Park, ef. al.[5] proposed a vari-
able dimension with input estimation filter. The second
approach is to use multiple dynamic model. For this ap-
proach, Blom and Bar-Shalom [6] proposed an interacting
multiple model (IMM) fiiter.

The Interacting Multiple Model (IMM) [6-8] estimator
is a suboptimal hybrid filter that has been shown to be one
of the most cost-effective hybrid state estimation schemes.
The value of hybrid models for tracking algorithm is that
the occurrence of target maneuvers can be explicitly in-
cluded in the kinematic equations through regime jumps.

But the model probabilities of IMM filter trend to be
slowly adapted from the nonmaneuver mode to maneuver
mode or from maneuver to nonmaneuver, although sud-
den maneuver can take place in the true system. This
is why the model probability is dependent on past model
probabilities. In order to track a suddenly and highly
maneuvering target, the technique which combines IMM
algorithm with error monitoring and recovery technique
of perception net is proposed in this paper.

The perception net [9,10], as a structural representa-
tion of the sensing capabilities of system, is formed by
the interconnection of logical sensors with three types of
modules: feature transformation module (FTM), data fu-
sion module (DFM), and constraint satisfaction module
SCSM). Observing the output and input of DFM, we can

etect an error of input data. Error monitoring and recov-
ery technique based on this function make it possible to
detect. and identify error, and to calibrate possible biases
involved in sensed data and extracted features. Both de-
tecting maneuver and compensating the estimated state
can be achieved by employing the properly implemented
error monitoring and recovery technique. The IMM filter
which employs the error monitoring and recovery tech-
nique shows good tracking performance for a highly ma-
neuvering target as well as reduces maximum values of
estimation errors when maneuvering starts and finishes

For its recursive structure and capability of sequential
data processing, the Kalman filter is widely used as a
tracking filter to estimate position, velocity, and accelera-
tion of a target in real-time. If Kalman filter is examined
in view of structure, it is that the current predicted state,
which is calculated from the state at the previous time, is
combined with the measurement that is acquired by phys-
ical sensor at current time [11,12]. Perception net based
geometric data fusion is the same as Kalman filtering, and
in order to introduce perception net in target tracking, we
also prove it through algebraic approach.

2. Problem Formulation

Consider a dynamical system (target model) of stan-
dard and linear discrete time-invariant measurement equa-

tion.
zi(k+1) = Fu(k) +ve(k) (1)
z(k) = Hz(k)+w(k) (2)
where z;(k) is an n-dimensional state vector at time k for
model t, z(k) is an m-dimensional measurement vector
at time k, and v(k) and w(k) are zero-mean, mutually

independent white Gaussian noise vectors with covariance
matrices Q(k) and R(k), respectively. The state vector
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would typically include position and velocity variables, as
well as other information that relates to the specific type
of platform being tracked. It is assumed that state vector
includes acceleration variables in here.

We focus here on the IMM filter for tracking a maneu-
vering target. We briefly review the IMM filter. The basic
assumption of the IMM filter is that the system obeys one
of a finite number of models with known parameters and
model switches occur according to a Markov chain with
known transition probabilities. In this approach the state
estimate is computed under each possible model hypothe-
sis as many filters as the number of assumed models with
each filter using a different combination of the previous
model conditioned estimates.

One cycle of the IMM filter consists of the following
three steps [7, 8].

o Step 1: Mixing of estimates from previous time (in-
teracting).

Zor(k — 1k — 1) =
N
> .k — 1k — D,k = 1k = 1), (3)
s=1

and
Py (k—-1k - 1) =
N

3 el = 1k = 1) {Py(k — 1k ~ 1)

ffis(k — 1|k — 1) — 0, (k — 1]k — 1)]
X [£(k = 1)k — 1) — 2oy (k — 1]k — 1)]T},
t=1,2,--N (4)

where

1
/"ﬂt(k - llk - 1) = aeslt/‘l’s(k - 1) (5)

N
Et = Zesltﬂs(k - 1)
s=1

and 63“ is the assumed Markov model switching proba-

bility from model s at previous time to model ¢ at current
time. N is the number of subfilters of IMM filter. ¢; is a
normalization factor.

e Step 2: Kalman filtering.

Zy(k|k — 1) = Fzo:(k'— 1]k — 1) (6)
Ey(klk) = Z¢(klk — 1) + G4 (k)ry (k) (7
P,(k|k — 1)=F;Po;(k — 1|k — 1)FF
+Q:(k - 1) (8)
Py(klk) = [I — Gi(k)H] Py(k|k — 1) (9)
(residual)

ri(k) = 2(k) — Z,(k|k — 1)

(predicted measurement)

(10)

3(klk — 1) = Ha (k|k - 1) (11)

(residual covariance)

S.(k) = HP,(k|k — 1)HT + R(k)
(filer gain)

Gi(k) = Py(k|k — 1)HT S,(k)™*
(likelyhood function)

(12)

(13)

Ai(k) = N(r(k); 0, S:(k)) (14)
(model probability)
1 N
plB) = <) > Ok =1)  (15)
s=1
where c¢ is a normalizing factor.
e Step 3: Combination.
N
2(klk) = 24 (klk)u(k) (16)
t=1

N
P(klk) = ue(k) {P.(k|k) + [£.(k|k) — £(k|K)]
t=1

x [&4(klk) — #(klk)]" } @

3. Perception Net

The perception net, as a structural representation of
the sensing capabilities of system, is based on geometric
data fusion. The perception net is formed by the inter-
connection of logical sensors with three types of modules:
feature transformation module (FTM), data fusion mod-
ule (DFM), and constraint satisfaction module (CSM). We
briefly represent FTM, DFM, and error monitoring and
recovery techinique.

It is assumed that noise is bounded by an uncertainty
hyper-volume or ellipsoid, and that the size of uncertainty
ellipsoid is small enough for a good linear approximation
around the nominal point in feature transformation. For-
mally, we represent the uncertainty, dz, of a sensor value,
z, as an ellipsoid of the following form.

dzT W, dz <1 (18)

where W, represents a symmetric weight matrix deter-
mining the size and shape of the ellipsoid.

The uncertainties propagate through input-output rela-
tionships between the input vector and the output vector
of modules. Let us define the mapping relationship be-
tween the input vector, =, and the output vector, y, of
FTM or a DFM. Then uncertainty propagation canbe ap-
proximated as the first order Jacobian relationship with
assumption that f is smooth and dz is small, as follow

(19)

of
aAZE, (20)
(21)

where p represents a parameter vector associated with the
module and J(z, p) represents the Jacobian relationship
between dy and dz. The uncertainty of x represented

y = f(z,p),
y+dy = f(z+dz,p) =~ f(z,p) +

3}
dy =~ a—idm = J(z,p)dz,
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as an ellipsoid of (18) can now be propagated to the un-
certainty of dz, represented as an ellipsoid in terms of
dy, through (21). By substituting dz = J* (z,p)dy, ob-
tained from (21), to (18), we have

dyT (I W, JTdy < 1 (22)

where J* represents the pseudo-inverse of J. The sym-
metric weight matrix, W, is defined as follow

w, =N w,Jt. (23)

Consider the data fusion as the geometric data com-
bining. For simplicity, consider the two measurements,
z1 and z9, defined respectively in the two measurement
space, where their uncertainty bounds are defined by the
weight matrices, W, and W,, respectively. Geometric
Data fusion method starts with defining the augmented
space, X = [z 2I]T and Wx = Diag[W., W,,], such
that the measurement data is represented in an augmented
space as (X, Wx ). Then the problem of fusing data is
equivalent to find a point, y, on the constraint manifold,
r1 = z9, defined in the X space in such a way that the
weighted distance between y and X is minimum. In other
words, the problem of fusing (z1, W, ) and (z2, W,,) is
equivalent to obtain y to minimize % ly — X “%Vx .

More specifically, the output y of module with z; and
9 as its inputs can be determined as the vector that min-
imizes (for convenience, we define that zi¢ indicates x;
whenever it is used as the subscript)

1 2
Z 3 lly — zillw, .-

i
Then y that minimizes (24) is calculated by least square
method as follow

y =Wy, + W) ' (Waiz1 + Waazy). (25)

The uncertainty bound, W, associated with y can be
obtained by applying (21), (22), and (23) to (25), as follow

T
w,={(44” + BBT)™'} (AW,147 + BW,3B")

x(AAT + BBT)™! (26)
where
A= (W, +Wa,) ' Woi, B= Wy +W,,) ! W

Simple perception net representation of a logical sensor
system is displayed in Fig. 1. The propagation through
FTM is from (18) to (23). The propagation through DFM
is from (24) to (26). Perception net is proposed to combine
sensors efficiently under multisensor environment. How-
ever, replacing physical sensor with logical sensor, we can
apply the perception net to the problem of tracking a tar-
get under the single sensor. Whether the data are from
the physical sensor or the logical sensor, this acquired data
in the same measurement space can be combined. This is
not inappropriate to the principle of perception net.

Error monitoring and recovery technique consists of
three steps. The first step is to detect an error in input
data by using the output of DFM. If the error is detected,
then the second step is to identify the source(sensor) which
making error. The third step is to replan the sensor with
fault. The inconsistency among the input data of DFM

(24)

o >
o >

/e \ / FM FTM
== (=] ==

Fig. 1. A schematic illustration of a logical sensor system

can be evaluated based on the ellipsoidal representation
of uncertainty bound: The input data of DFM are said
to be inconsistent, if the ellipsoidal uncertainty bounds of
input data have no common intersection. The existence
of a common intersection among the input data can be
evaluated by: if ||y(k) — xi(k)”%v,.- <1 fori=1, 2
with the output, y(k), of DFM, then there exists a com-
mon intersection among the ellipsoidal uncertainty bound
of x; (k)

The isolation of error sources can be done through the
net hierarchy. By applying the above error detection
method to DFMs, those logical sensors associated with
DFMs can be classified either likely-in-error, unlikely-in-
error, or possibly-in-error. These classifications are prop-
agated through the net to extended the classifications to
other logical sensors connected through the hierarchy. The
cross-checking of these classifications propagated through
the net hierarchy provides further isolation of errors. Once
source are isolated, then the system take action to repair
the errors and to recover from the error. The system needs
to replan the task based on the isolated errors. But iden-
tification and replanning of error sources cannot be imple-
mented in the general method but should be implemented
in the suitable method to the circumstance.

4. Maneuvering Target Tracking Using
Error Monitoring and Recovery
Technique

To apply the perception net to tracking filter, we need
to know how perception net is connected with Kalman
filter. Covariance matrix of state vector in Kalman filter
represents the size of a state uncertainty. Also inverse
covariance matrix means the weighting matrix of state. It
is shown to be true through Theorem 1.

Theorem 1: Let z1(k) be the predicetd state of
Kalman filter, z(k|k — 1), and z5(k) be

z2(k) = HT 2(k). (27)

If the covariance matrices of state ve(;]tor and measure-
ment vector are nonsingular and HH* = I, xm,, then

the output, y, of DFM with z;(k) and zo(k) as its in-
puts is same with the measurement update equation of
Kalman filter using the predicted state, Z(k|k — 1), and
measurement, z(k).

Proof: We assume that weighting matrices, W (k)
and W, (k), are the inverse covariance matrices associated
with state vector and measurement vector, P~ !(k|k —
1) and R™1(k), respectively. Then weighting matrix of
z2(k) follows from (21), (22), and (23)

Wee = HTR™Y(k)H. (28)
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The output of DFM with z1(k) and z2(k) as its inputs
can be determined by (25) as

y(k)={P (klk - 1) + HTR'(k)H Y}

x {P‘l(k|k — 1)y () +HTR_1Ha:2(k)}.(29)

From the matrix inversion lemma [13], it can be shown
that

y(k)={P~"(klk — 1) + HTR'l(k)H}"
x P~ (k|k — 1)z1 (k)
+{P klk — 1) + HTRT'(K)H }
xHTR Y (k)Hzy(k)
=I—-P(klk-1)HT
x {BP(klk - )ET + R(k)}_l Hz (k)
+P(kik — 1)ET

x{f~ P(kik - 1)BT + e(kl Hao(k)
- FE)F}

(k) =+ C'(k)Bzy(k)

1 1

(30)

Agt;sz, 3t

w
S|
o
)
0
I
o

‘ Vi3 2 nﬂmonm
s2inty € hipsoids of predi

erseciic ctea
stete enc o surement Tf the inco: _sistency 2re detected,
iy

he result are used for desision of target maneuvering.

The detecting incorvsistency can be performed at every
subfilters in step 2 of IMM algorithm. Then the incon-
sistency detection is performed through the test (for sim-
plicity, we define that z(k) indicates £ (k|k — 1) whenever
it is used as a subscript).

120 (klk) = & (klle = DG, <1 (33)
) , 2
GRS EEO] S
HT 2 (%)
t=1,2, (34)

If the inconsistencies are detected in DFM of subfilter, it
means that predicted state or measurement has an error.
Fig. 2 shows the results of the inconsistency detection

©
Fig. 2. Inconsistencies between input data in the
subfilters: (a)constant velocity model(DFM1),
(b)incremental acceleration model(DFM2),
(c)constant acceleration model(DFM3)

about the conventional IMM filter with 3 models [7] by
100 Monte-Carlo simulations, when target starts tc me-

aeuver at 3C sec and finishes maneuvering at 55 sec. Fig.
Z(a) presentes the inconsistencies of subfilter with con-

stant velocity model. Fig. 2(b) and Fig. Z(c) represent
tag incor\sistenm s of subfilter with incrementzl sccelers-
tlon model and constant acceleration model, reszactivelv.
We cen find that the inconsistencies anpear cutstendi ngly
maoeuver staris and firishes.

Onz cycle of IMM filter with 3 modezls is depicied iz

ig. 2 as net hisrarchy by the percepiion n=i. Sxcepting
‘he aemeat marked 25 “&”, Fig. 3 is tha sams 2¢ the st
¢ anc the otec 8 of IMM filter. TFM 1-3 crrias
the st a. 2 vwshich mesns Xalman Fﬂt'—‘rnc 2t suly

o

rrespends i¢ the sien 2. When SX°
istencies between their inpuis in &
-3 arz marked 28 “A” to indicstes thei 4
'Y—':‘,-—et’fof.
the isolation of ervor source, we n
1Atz hag an error. Wher the incon
1o oevery DFM mcaulﬁ
inted stetes in all model have 2:0crs or
zrror.  Rach predisted sta‘u
Ael nrobabilities in the orevi
$), and is caleuleted by mis
Thesrefore, although the target mansuv
1ae predicied state of constant acceleration :nﬂ Yel is
immediately reflected on estimatior of the track. Fou whi
reasor, the inconsistencies are detected in fusicn module
for somewhat interval after target has maneuvered. Ti-
ndlly, if there is not an incessant bias in messurement,
the inconsistencies of DM come from the error which
tne predicted states have. Hence, all predicted states are
classified into likely-in-error anc are marked as “X”. Alsc
the measurement is classified into unlikely-in-er-or and is
marked as “()”.

With the predicted states, the maneuver detection is
performed over DFM1, DFM2, and DFM3 through the

test
L& (35)
2. U {“j‘(i]i) — &:(ii - l)ugvzt(i)_ 1} =gN,

i=k—g+1 t=1

wa can
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Fig. 3. Perception net representation of IMM filter
with 3 models

EXT=

where U {-} is an unit step function, g is the length of a
fixed-size window.

The classifications of input data are propagated through
the net. Then, the sensor with an error is classified into
a defective sensor. the logical sensors which generates
the predicted states are classified into a defective sensor
and the physical sensor which acquires the measurement
is classified into a indefectible sensor. Therefore it is de-
sirable to put an weight on the data(measurement) sup-
plied by the indefectible sensor(physical sensor) for more
favorable filtering. If the target maneuver is detected, the
final state is updated by fusing its current state with the
measurement from FTM, as marked by “&” in Fig. 3. In
order to fuse two data, Kalman filter measurement updata
is carried out as follows

2™ (k|k) = 2(k|k) + G™ (k) {z(k) — HZ(k|k)}, (35)
P (k|k) = {I — G™ (k) H} P(KIE), (36)
G™ (k) = P(kl)HT {HP(klk)HT + R(K)}  (37)

where superscript m denotes the estimation value of time
at which maneuver is detected.

In spite of mistake of maneuver decision, the above
mensioned method hardly effect on the tracking perfor-
mance. But the proposed method has an effect on the
progress of tracking performance at starting and stopping
maneuver. In conclusion, IMM filter which employing the
proposed method takes advantage of IMM filter and re-
duces maximum value of estimation error.

5. Simulations

The performance of the proposed error monitoring
method is compared with the standard IMM estimator us-
ing Monte-Carlo simulations. A target that turns in the
two-dimensional space is considered [5]. The target is on a
constant course and speed until 30 sec and starts to ma-
neuver at 30 sec and stops maneuvering at 55 sec. Two
maneuver input scenarios are considered for performance
analysis. When uy and uy indicate the maneuver input
of z direction and y direction in two-dimensional space,
respectively, each scenario of maneuver input acceleration
is made up of the maneuver level as follows

Simulation 1: uy = —40m/s?, Uy = 40m /s?
Simulation 2: ux = —60m/s?, Uy = 60m /s2.

Sampling time T = 1 sec, the process noise covariance
the measurement noise covariance Ry, = Rgp = 144m?
and Ri3 = Rg) = 5m? are used in the simulation. The
;eal'initial state and filter initial state of target are given

Yy
£(0) = [200 100 0 200 —-300 0]°
£0)=[190 90 1 190 —310 1]".

The value of the effective window length is taken to be
2. The IMM filter to be considered is a three-model IMM
filter. The first model, M, is a second-order kinematic
model with white noise acceleration. The second model,
M, and the third model, M3, are third-order kinematic
models with white noise acceleration increments with dif-
ferent variances. Model M has process noise with a stan-

dard deviation of 10m/ s2 and model M3 has process noise
with a standard deviation of 4m/s%. The assumed model
switching probabilities (Markov chain transition probabil-
ities) are indicated in Table 1.

Table 1. Model switching propabilities

[ My [ M, [ Mz |
M, 0.85 0.15 0
My 0.33 0.34 0.33
Ms 0 0.15 0.85

100 Monte-Carlo simulations were performed. Fig. 4
gives position RMS errors for both the conventional IMM
and error monitoring IMM, while Fig. 5 gives the corre-
sponding velocity RMS errors.

It is seen from Fig. 4 that the RMS error in the pro-
posed filter is nearly equal to those in the conventional
IMM filter before a maneuver start. Since the target ma-
neuvers, the conventional IMM filter is slowly adapt to
maneuvering mode until the constant acceleration model
has enough model probability to play a main role in esti-
mating the track. On the other hand, the proposed filter
detects a target maneuver and the RMS errors decrease
quickly more than that of conventional IMM.

The RMS error in stopping maneuvering is similar to
that in beginning maneuvering. There is only slice dif-
ference between two filter in case of the RMS errors of
velocity. In simulation 2, the target that turns rapidly
was considered. Fig. 6 is the plot of the conventional
IMM filter and proposed filter. In this case, Fig. € shows
that the peak error of the proposed filter is outstandingly
reduced while the target maneuver.

Overall, the proposed filter is adaptable to highly ma-
neuvering input level and repeated maneuvering case.
Furthermore, the algorithm of proposed filter is very sim-
ple and is not harmful to advantage of conventional IMM.

6. Conclusions

In this paper, the modified IMM scheme is derived by
adding the error monitoring and recovery technique to
conventional IMM filter. To do this, it is also proved
that the geometric data fusion method of perception net
has the same decription as the measurement update of
Kalman filter. The maneuvering is detected by the pro-
posed error monitoring and recovery technique based on
perception net. If the maneuvering is detected, then
the estimated state of conventional IMM filter is com-
bined with the measurement in order to put weight on
the measurement. Its effectiveness has been demonstrated
through simulations. The proposed method shows higher
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