Browse > Article
http://dx.doi.org/10.1016/j.net.2019.04.011

A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles  

Jian, Xiaobin (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University)
Kong, Xiangzhe (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University)
Ding, Shurong (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University)
Publication Information
Nuclear Engineering and Technology / v.51, no.6, 2019 , pp. 1575-1588 More about this Journal
Abstract
Fracture near the U-10Mo/cladding material interface impacts fuel service life. In this work, a mesoscale stress model is developed with the fuel foil considered as a porous medium having gas bubbles and bearing bubble pressure and surface tension. The models for the evolution of bubble volume fraction, size and internal pressure are also obtained. For a U-10Mo/Al monolithic fuel plate under location-dependent irradiation, the finite element simulation of the thermo-mechanical coupling behavior is implemented to obtain the bubble distribution and evolution behavior together with their effects on the mesoscale stresses. The numerical simulation results indicate that higher macroscale tensile stresses appear close to the locations with the maximum increments of fuel foil thickness, which is intensively related to irradiation creep deformations. The maximum mesoscale tensile stress is more than 2 times of the macroscale one on the irradiation time of 98 days, which results from the contributions of considerable volume fraction and internal pressure of bubbles. This study lays a foundation for the fracture mechanism analysis and development of a fracture criterion for U-10Mo monolithic fuels.
Keywords
Bubble volume fraction; Bubble pressure; Bubble size; Mesoscale stress; Fuel fracture mechanism;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D.B. Lee, K.H. Kim, C.K. Kim, Thermal compatibility studies of unirradiated U Mo alloys dispersed in aluminum, J. Nucl. Mater. 250 (1997) 79-82.   DOI
2 M.K. Meyer, G.L. Hofman, S.L. Hayes, et al., Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel, J. Nucl. Mater. 304 (2002) 221-236.   DOI
3 J. Park, K. Kim, C. Kim, et al., The irradiation behavior of atomized U-Mo alloy fuels at high temperature, Met. Mater. Int. 7 (2001) 151-157.   DOI
4 J. Jue, H.P. Blair, C.R. Clark, et al., Fabrication of monolithic RERTR fuels by hot isostatic pressing, Nucl. Technol. 2 (2010) 204-210.
5 A.B. Robinson, D. Wachs, D.E. Burkes, US RERTER Fuel development post irradiation examination results, in: Proceedings of the 30th International Meeting on Reduced Enrichment for Research and Test reactors,Washington, DC, 2008.
6 F. Rice, W. Williams, A. Robinson, et al., RERTR-12 Post-irradiation Examination Summary Report, Idaho National Laboratory, 2015.
7 A.M. Casella, D.E. Burkes, P.J. MacFarlan, et al., Characterization of fission gas bubbles in irradiated U-10Mo fuel, Mater. Char. 131 (2017) 459-471.   DOI
8 M.K. MEYER, J. GAN, J.F. JUE, et al., Irradiation performance of u-mo monolithic fuel, Nucl. Eng. Technol. 46 (2014) 169-182.   DOI
9 D.M. Dowling, R.J. White, M.O. Tucker, The effect of irradiation-induced resolution on fission gas release, J. Nucl. Mater. 1 (1982) 37-46.
10 Y.S. Kim, G.L. Hofman, Fission product induced swelling of UeMo alloy fuel, J. Nucl. Mater. 419 (2011) 291-301.   DOI
11 J. Jue, D.D. Keiser, B.D. Miller, et al., Effects of irradiation on the interface between U-Mo and zirconium diffusion barrier, J. Nucl. Mater. 499 (2018) 567-581.   DOI
12 D. Salvato, A. Leenaers, S. Van den Berghe, et al., Pore pressure estimation in irradiated UMo, J. Nucl. Mater. 510 (2018) 472-483.   DOI
13 J.L. Schulthess, W.R. Lloyd, B. Rabin, et al., Mechanical properties of irradiated U Mo alloy fuel, J. Nucl. Mater. 515 (2019) 91-106.   DOI
14 G.Y. Jeong, Y.S. Kim, Y.J. Jeong, et al., Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel, J. Nucl. Mater. 502 (2018) 331-348.   DOI
15 S. Hu, A.M. Casella, C.A. Lavender, et al., Assessment of effective thermal conductivity in U-Mo metallic fuels with distributed gas bubbles, J. Nucl. Mater. 462 (2015) 64-76.   DOI
16 D.E. Burkes, A.M. Casella, A.J. Casella, et al., Thermal properties of U-Mo alloys irradiated to moderate burnup and power, J. Nucl. Mater. 464 (2015) 331-341.   DOI
17 D.E. Burkes, D.J. Senor, A.M. Casella, A model to predict failure of irradiated U-Mo dispersion fuel, Nucl. Eng. Des. 310 (2016) 48-56.   DOI
18 J. Spino, J. Rest, W. Goll, et al., Matrix swelling rate and cavity volume balance of UO2 fuels at high burn-up, J. Nucl. Mater. 346 (2005) 131-144.   DOI
19 Y. Cui, Y. Huo, S. Ding, et al., An analytical solution for simulation of the fission gas behaviors with time-dependent piece-wise boundary resolution, J. Nucl. Mater. 424 (2012) 109-115.   DOI
20 J. Rest, A model for the effect of the progression of irradiation-induced recrystallization from initiation to completion on swelling of UO2 and Ue10Mo nuclear fuels, J. Nucl. Mater. 346 (2005) 226-232.   DOI
21 G.K. Miller, D.E. Burkes, D.M. Wachs, Modeling thermal and stress behavior of the fueleclad interface in monolithic fuel mini-plates, Mater. Des. 31 (2010) 3234-3243.   DOI
22 F. Yan, Y. Zhao, S. Ding, Effect of fuel meat thickness on the non-uniform irradiation-induced thermo-mechanical behavior in monolithic UMo/Al fuel plates, in: Proceedings of the 25th International Conference on Nuclear Engineering, ICONE25, Shanghai, China, 2017.
23 H. Ozaltun, M.H. Herman Shen, P. Medvedev, Assessment of residual stresses on U10Mo alloy based monolithic mini-plates during Hot Isostatic Pressing, J. Nucl. Mater. 419 (2011) 76-84.   DOI
24 Y.S. Kim, G.L. Hofman, J.S. Cheon, et al., Fission induced swelling and creep of UeMo alloy fuel, J. Nucl. Mater. 437 (2013) 37-46.   DOI
25 S.J. Miller, H. Ozaltun, Evaluation of U10Mo fuel plate irradiation behavior via numerical and experimental benchmarking, in: Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition IMECE2012 November 9-15, Houston, Texas, USA, 2012.
26 M.V. Speight, Nucl. Sci. Eng. 180 (1969).
27 N. Ramakrishnan, V.S. Arunachalam, Effective elastic moduli of porous solids, J. Mater. Sci. 25 (1990) 3930-3937.   DOI
28 S. Hu, W. Setyawan, V.V. Joshi, et al., Atomistic simulations of thermodynamic properties of Xe gas bubbles in U10Mo fuels, J. Nucl. Mater. 490 (2017) 49-58.   DOI
29 J. Rest, Y.S. Kim, G.L. Hofman, et al., U-mo Fuels Handbook, Argonne National Laboratory Report ANL-09/31, Chicago, Illinois, 2009.
30 Y. Cui, S. Ding, Z. Chen, et al., Modifications and applications of the mechanistic gaseous swelling model for UMo fuel, J. Nucl. Mater. 457 (2015) 157-164.   DOI
31 Y. Zhao, X. Gong, Y. Cui, et al., Simulation of the fission-induced swelling and creep in the CERCER fuel pellets, Mater. Des. 89 (2016) 183-195.   DOI
32 X. Kong, X. Tian, F. Yan, et al., Thermo-mechanical behavior simulation coupled with the hydrostatic-pressure-dependent grain-scale fission gas swelling calculation for a monolithic UMo fuel plate under heterogeneous neutron irradiation, Open Eng. 8 (2018) 243-260.   DOI
33 H. Ozaltun, R.M. Allen, Y.H. Han, Effects of thickness of Zirconium liner on stress-strain characteristics of U10Mo monolithic plates, in: Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition IMECE2013 November 15-21, San Diego, California, USA, 2013.
34 Y.S. Kim, G.L. Hofman, J.S. Cheon, Recrystallization and fission-gas-bubble swelling of U-Mo fuel, J. Nucl. Mater. 436 (2013) 14-22.   DOI
35 J. Gan, B.D. Miller, D.D. Keiser, et al., Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density, J. Nucl. Mater. 492 (2017) 195-203.   DOI
36 J. Jue, D.D. Keiser, C.R. Breckenridge, et al., Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier, J. Nucl. Mater. 448 (2014) 250-258.   DOI
37 D. Kim, K. Bae, H. Lee, et al., Finite element simulation of creep crack growth using combined plastic-creep damage model, Procedia Structural Integrity 2 (2016) 825-831.   DOI
38 J. Spino, A.D. Stalios, H. Santa Cruz, et al., Stereological evolution of the rim structure in PWR-fuels at prolonged irradiation: dependencies with burn-up and temperature, J. Nucl. Mater. 354 (2006) 66-84.   DOI
39 D.E. Burkes, R. Prabhakaran, T. Hartmann, et al., Properties of DU-10wt% Mo alloys subjected to various post-rolling heat treatments, Nucl. Eng. Des. 240 (2010) 1332-1339.   DOI
40 D.E. Burkes, R. Prabhakaran, J. Jue, et al., Mechanical properties of DU-xMo alloys with x = 7 to 12 weight percent, Metall. Mater. Trans. 40 (2009) 1069-1079.   DOI
41 X. Du, Z. Jie, L. Yinghua, Plastic failure analysis of defective pipes with creep damage under multi-loading systems, Int. J. Mech. Sci. 128-129 (2017) 428-444.   DOI
42 J.F. Mao, J.W. Zhu, S.Y. Bao, et al., Creep deformation and damage behavior of reactor pressure vessel under core meltdown scenario, Int. J. Press. Vessel. Pip. 139-140 (2016) 107-116.   DOI