• Title/Summary/Keyword: Maximum likelihood model

Search Result 879, Processing Time 0.022 seconds

Maximum Likelihood Estimation for the Laplacian Autoregressive Time Series Model

  • Son, Young-Sook;Cho, Sin-Sup
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.3
    • /
    • pp.359-368
    • /
    • 1996
  • The maximum likelihood estimation is discussed for the NLAR model with Laplacian marginals. Since the explicit form of the estimates cannot be obtained due to the complicated nature of the likelihood function we utilize the automatic computer optimization subroutine using a direct search complex algorithm. The conditional least square estimates are used as initial estimates in maximum likelihood procedures. The results of a simulation study for the maximum likelihood estimates of the NLAR(1) and the NLAR(2) models are presented.

  • PDF

A Doubly Winsorized Poisson Auto-model

  • Jaehyung Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.559-570
    • /
    • 1998
  • This paper introduces doubly Winsorized Poisson auto-model by truncating the support of a Poisson random variable both from above and below, and shows that this model has a same form of negpotential function as regular Poisson auto-model and one-way Winsorized Poisson auto-model. Strategies for maximum likelihood estimation of parameters are discussed. In addition to exact maximum likelihood estimation, Monte Carlo maximum likelihood estimation may be applied to this model.

  • PDF

Maximum penalized likelihood estimation for a stress-strength reliability model using complete and incomplete data

  • Hassan, Marwa Khalil
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.355-371
    • /
    • 2018
  • The two parameter negative exponential distribution has many practical applications in queuing theory such as the service times of agents in system, the time it takes before your next telephone call, the time until a radioactive practical decays, the distance between mutations on a DNA strand, and the extreme values of annual snowfall or rainfall; consequently, has many applications in reliability systems. This paper considers an estimation problem of stress-strength model with two parameter negative parameter exponential distribution. We introduce a maximum penalized likelihood method, Bayes estimator using Lindley approximation to estimate stress-strength model and compare the proposed estimators with regular maximum likelihood estimator for complete data. We also introduce a maximum penalized likelihood method, Bayes estimator using a Markov chain Mote Carlo technique for incomplete data. A Monte Carlo simulation study is performed to compare stress-strength model estimates. Real data is used as a practical application of the proposed model.

Restricted maximum likelihood estimation of a censored random effects panel regression model

  • Lee, Minah;Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.4
    • /
    • pp.371-383
    • /
    • 2019
  • Panel data sets have been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Maximum likelihood (ML) may be the most common statistical method for analyzing panel data models; however, the inference based on the ML estimate will have an inflated Type I error because the ML method tends to give a downwardly biased estimate of variance components when the sample size is small. The under estimation could be severe when data is incomplete. This paper proposes the restricted maximum likelihood (REML) method for a random effects panel data model with a censored dependent variable. Note that the likelihood function of the model is complex in that it includes a multidimensional integral. Many authors proposed to use integral approximation methods for the computation of likelihood function; however, it is well known that integral approximation methods are inadequate for high dimensional integrals in practice. This paper introduces to use the moments of truncated multivariate normal random vector for the calculation of multidimensional integral. In addition, a proper asymptotic standard error of REML estimate is given.

Development of Rating Curves Using a Maximum Likelihood Model (최우도 모형을 이용한 수위-유량곡선식 개발)

  • Kim, Gyeong-Hoon;Park, Jun-Il;Shin, Chan-Ki
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.83-93
    • /
    • 2008
  • The non-linear least squares model(NLSM) has long been the standard technique used by hydrologists for constructing rating curves. The reasons for its adaptation are vague, and its appropriateness as a method of describing discharge measurement uncertainty has not been well investigated. It is shown in this paper that the classical method of NLSM can model only a very limited class of variance heterogeneity. Furthermore, this lack of flexibility often leads to unaccounted heteroscedasticity, resulting in dubious values for the rating curve parameters and estimated discharge. By introducing a heteroscedastic maximum likelihood model(HMLM), the variance heterogeneity is treated more generally. The maximum likelihood model stabilises the variance better than the NLSM approach, and thus is a more robust and appropriate way to fit a rating curve to a set of discharge measurements.

Regularity of Maximum Likelihood Estimation for ARCH Regression Model with Lagged Dependent Variables

  • Hwang, Sun Y.
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.1
    • /
    • pp.9-16
    • /
    • 2000
  • This article addresses the problem of maximum likelihood estimation in ARCH regression with lagged dependent variables. Some topics in asymptotics of the model such as uniform expansion of likelihood function and construction of a class of MLE are discussed, and the regularity property of MLE is obtained. The error process here is possibly non-Gaussian.

  • PDF

Vector Quantization based Speech Recognition Performance Improvement using Maximum Log Likelihood in Gaussian Distribution (가우시안 분포에서 Maximum Log Likelihood를 이용한 벡터 양자화 기반 음성 인식 성능 향상)

  • Chung, Kyungyong;Oh, SangYeob
    • Journal of Digital Convergence
    • /
    • v.16 no.11
    • /
    • pp.335-340
    • /
    • 2018
  • Commercialized speech recognition systems that have an accuracy recognition rates are used a learning model from a type of speaker dependent isolated data. However, it has a problem that shows a decrease in the speech recognition performance according to the quantity of data in noise environments. In this paper, we proposed the vector quantization based speech recognition performance improvement using maximum log likelihood in Gaussian distribution. The proposed method is the best learning model configuration method for increasing the accuracy of speech recognition for similar speech using the vector quantization and Maximum Log Likelihood with speech characteristic extraction method. It is used a method of extracting a speech feature based on the hidden markov model. It can improve the accuracy of inaccurate speech model for speech models been produced at the existing system with the use of the proposed system may constitute a robust model for speech recognition. The proposed method shows the improved recognition accuracy in a speech recognition system.

Likelihood-Based Inference on Genetic Variance Component with a Hierarchical Poisson Generalized Linear Mixed Model

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1035-1039
    • /
    • 2000
  • This study developed a Poisson generalized linear mixed model and a procedure to estimate genetic parameters for count traits. The method derived from a frequentist perspective was based on hierarchical likelihood, and the maximum adjusted profile hierarchical likelihood was employed to estimate dispersion parameters of genetic random effects. Current approach is a generalization of Henderson's method to non-normal data, and was applied to simulated data. Underestimation was observed in the genetic variance component estimates for the data simulated with large heritability by using the Poisson generalized linear mixed model and the corresponding maximum adjusted profile hierarchical likelihood. However, the current method fitted the data generated with small heritability better than those generated with large heritability.

An Estimation of Parameters in Weibull Distribution Using Least Squares Method under Random Censoring Model (임의 중단모형에서 최소제곱법을 이용한 와이블분포의 모수 추정)

  • Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.263-272
    • /
    • 1996
  • In this parer, under random censorship model, an estimation of scale and shape parameters in Weibull lifetime model is considered. Based on nonparametric estimator of survival function, the least square method is proposed. The proposed estimation method is simple and the performance of the proposed estimator is as efficient as maximum likelihood estimators. An example is presented, using field winding data. Simulation studies are performed to compare the performaces of the proposed estimator and maximum likelihood estimator.

  • PDF

On the maximum likelihood estimators for parameters of a Weibull distribution under random censoring

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.241-250
    • /
    • 2016
  • In this paper, we consider statistical inferences on the estimation of the parameters of a Weibull distribution when data are randomly censored. Maximum likelihood estimators (MLEs) and approximate MLEs are derived to estimate the parameters. We consider two cases for the censoring model: the assumption that the censoring distribution does not involve any parameters of interest and a censoring distribution that follows a Weibull distribution. A simulation study is conducted to compare the performances of the estimators. The result shows that the MLEs and the approximate MLEs are similar in terms of biases and mean square errors; in addition, the assumption of the censoring model has a strong influence on the estimation of scale parameter.