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Abstract

This paper introduces doubly Winsorized Poisson auto-model by truncating the
support of a Poisson random variable both from above and below, and shows that
this model has a same form of negpotential function as regular Poisson auto-mode]
and one-way Winsorized Poisson auto-model. Strategies for maximum likelihood
estimation of parameters are discussed. In addition to exact maximum likelihood
estimation, Monte Carlo maximum likelihood estimation may be applied to this model.

1. Introduction

Poisson spatial auto-models proposed by Besag (1974) have been popular for the analysis of
count data that exhibit dependence. Such models are particularly useful for spatial processes
defined on lattice-indexed random fields. Patterns of muortality or morbidity in epidemiological
studies have been described using these models (e.g., Clayton and Kaldor 1887). However,
Besag (1974) showed that Poisson auto-models may be used to characterize only negative
spatial dependence due to the ‘summability’ condition, a requirement that the joint probability
distribution for a set of spatial random variables have a finite normalizing constant. Based on
the concept that converting the infinite supports of Poisson random variables to finite supports
can ensure that the summability condition is met, Kaiser and Cressie (1997) proposed a
Winsorized Poisson auto-model using truncated random variables. This Winsorized Poisson
auto-model can be used to incorporate either positive or negative spatial dependencies among
a set of variables. Lee and Kaiser (1997) used this model in describing spatial dependence in
occurrences of Sweet Birch trees in the northeastern United States. In this example, zero
counts were too abundant in the observed data for a Poisson model to provide an adequate fit,
and zero values were deleted from the data proir to analysis. It is not uncommon in sets of
data composed of small counts that the zero class is overly-represented for description
through use of a Poisson model (e.g., Cohen 1960). In these situations, one approach is to
truncate a Poisson distribution from below.

In this paper, we adapt the Winsorized Poisson auto-model to include truncation from both
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above and below. The primary difficulty in defining a valid auto-model for doubly Winsorized
Poisson random variables is exclusion of zero from the support of a Poisson random variable.
In Besag’s development of auto-models (1974), a basic assumpton was that zero be a possible
value in the support of each random variable. Auto-models may be developed without the
use of zero values, providing greater flexibility in the formulation of models for a number of
situations (Kaiser and Cressie 1996).

Winsorization makes it possible to evaluate the joint distribution normalizing constant in
Poisson auto-models because the support of each random variable is then finite. Therefore,
exact maximum likelihood estimation can be accomplished theoretically, but in practice would
require the use of a computer having no cpu time limit. In actual use of Winsorized Poisson
auto-models, Monte Carlo maximum likelihood estimation method is more efficient since the
unnormalized joint distribution is not evaluated for all possible values but rather is
approximated as an average over samples from some density, called an importance distribution
(e.g., Penttinen 1984; Geyer and Thompson 1992; Lee and Kaiser 1997).

The remainder of the paper is organized as follows. In Section 2, the formulation of
auto-models will be briefly reviewed. In Section 3, a Poisson distribution Winsorized both
from above and below will be used to construct a class of doubly-Winsorized Poisson
auto-models. Section 4 contains possible maximum likelihood estimation methods for the
models developed in Section 3, and section 5 presents a small example that is used to
illustrate the development of previous sections.

2. The Formulation of Poisson Auto—Models

In this section, some notation is introduced and general results that will be needed later in
this paper are briefly reviewed. These results allow a formulation that is a slight variation of

the framework based on Markov random fields developed originally by Besag (1974). Let s,
denote a physical location in a geographic region of interest, and let D={ s; i=1,:-, n} be
a finite lattice (regular or irregular) defined by these sites. The random process associated
with these geographic locations will be denoted as Z={Z( s,): s;= D}. Auto-models are
formulated on the basis of a Markov random field defined by the specification of a

neighborhood for each component of Z. A site s, is a neighbor of a site s, if the
conditional distribution of Z( s;) given {z( s,):k#{} depends functionally on the value of
2(s;)). Let N;={s;; s; is a neighbor of s;} be the neighborhood of site s, and, for
discrete random variables, let the probability mass function (pmf) of Z( s;), conditional on its

neighbors, be given by
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p(2( s)lz( N))=p(z( s)l{z( s;): s;€ N;}).

A Poisson auto-model results from specifying that all components of Z have Poisson
conditional pmfs. The quantity that connects such a set of conditional pmfs with the joint

likelihood of Z is called the 'negpotential function’ and may be defined here as
Q(2)=log {Pr(2)/Pr( z9)}, where zy=(zp,-,2p)" is in the support set, 2, of the joint

pmf of Z, and € 2)is defined for all ze€Q. If one can calculate @( - ), the joint pmf of 2
is available as

___exp{Q(2)}
1) f(Z) EQGXD {Q( t)} .

Pairwise-only dependence is an assumption often made in spatial models and, with this
assumption, the negpotential function may be written as (Besag, 1974)

(2) Q2= 2 2(s)GL2( s))+ 22 1cien( $D2( 5)G 2 59, 2( ),

where G ( -, +) is zero if 2( s;) is not an element of the set N, This restriction on the
limits of summation in the interaction term arises from a theorem of fundamental importance
due to Hammersley and Clifford (Hammersley and Clifford 1971, Besag 1974). Cressie (1993,
p. 416) and Kaiser and Cressie (1996) demonstrate that the terms of equation (2) may be
written as functions of conditional pmfs,

p(z( sl 2o ( NY)
p(2o( sl zo( N)) |”

(3) z( $;)GL=2( s;))=log {

and

p(2(s)lz(sp), 20( N7 p(zo(_sl zy( N)))
p(zo( sl2(s), 20( N7 plz( s)l zg( NY)) |’

4y 2( s)z( ;)G (2( s,), z( s,-))=log[

where N; /= {z2( s,): s,EN;, k+j}, 2o( s;) denotes that z( s;)=2z;, and z,( N;) denotes

that {z( s;)=z2y s;€ N;,j#i}. This result indicates the way in which the negpotential
function can be constructed directly from a set of conditional pmf specificatons. The last
general result that will be needed here is proved in a theorem by Kaiser and Cressie (1996).
Within the context of pairwise-only dependence, the result says that any specification of
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conditional pmfs {p(z( s)lz( N;)):i=1,--,n} such that the resulting terms for
2( s)2( ;)G {2( s;),2(s;)) are symmetric in 2 and j, leads to a well-defined joint

probability model for Z as long as the summability condition is met, that is, as long as
) 2 exp(Q( 1)< oo,
teQ

If this is the case, the joint pmf and likelihood are available through equation (1) and (2).
The existing method to construct a Poisson auto-model depends on the following result of
Besag (1974). For models in which the conditional pmfs are specified as belonging to an
exponential family,

(6) p(2( sl z( N))=exp{A(z2( ND))B{z( s))—D{ z( N))+ C{2( s},

the functions A 2( Ny), i=1,-+, » must satisfy
(7N Al z( N))=a;+ gﬂijB,‘(Z( s,

where 7;=7; forall 7 and j, and 7,;,=0 if s, is not in N, the neighborhood of s,.
A standard Poisson specification for the conditional pmfs (6) results from taking

Bfz( s))=2z(s),D( z( N))=exp{A,(2z( N))}, and C{z( s;))=—log(z( s)!).
Using the equations (2), (3), and (5), the negpotential function for this regular Poisson
auto-model becomes

©) Qz)= [a;2( s)—log(z( s)N]+ 1s,§<;s/7"f'z( s)z( sp),

1si<n

where 7;=0if s;& N;. The joint support £ of a regular Poisson auto-model is the n-fold
Cartesian product of the set of nonnegative integers. Now, the summability condition (5) does
not hold for @( - ) given by equation (8) should any one of the {7;} be positive (Besag,
1974). Thus, for a well defined Poisson auto-model, we must have 7 ;<0 for all 7 and ;,
which implies that the model must contain only negative dependence relations among the

elements of Z. Kaiser and Cressie (1997) defined Winsorized Poisson conditional pmfs, for

0<z( s,)<R for all i=1,--,7n, as
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9 2 sl z( N))=exp{A{ z( N))z( s;)—D{ z( N;))+log(z( s))},
where
D z( Ny =] epiAlzCND)}, if 2 s)<R—1

exp{A(2z( N)}—¢, if 2(s)=R,

for some 0<¢;<exp{A L z( N,))}. In these expression, R is a large positive integer that

must be specified in model formulation. They showed that if A,( z2( N,))=a;+ g‘,v,;z( s;),

the negpotential function from the definition of (9) is identical with (8) but that the #;’s can
have not only negative but also positive values. This implies that the model can be used to

characterize either negative or positive dependence among the elements of Z.

3. Models for Doubly—Winsorized Poisson Conditionals

In this section, an auto-model for Poisson random variables Winsorized from below as well
as from above is developed. Double Winsorization of a regular Poisson random variable is
considered first, and then these distributions are used in construction of an auto-models.

3.1 Poisson Winsorization

Let X be a Poisson random variable with pmf

x

A =4r exp(=2), x={0,1,,},

for A>0. With X(a) denoting the indicating function for an event a, define the
doubly-winsorized random variable
Z=R; (X<R;)+ XI(R;+1<X<Ry—1)+ Ry(X=Ry), for finite, non-negative integer

values R; and R;. Then the pmf of Z may be written as
R At /12
HzA, RLRy) ={ 2 4- exp(—-/l)}l(z= R +{§ exp(—/l)}I(RL+ 1 <z<Ry—1)

+{1 - Rg;‘—; exp(—/l)}l(z=RU).
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From Taylor's formula for exp{(— A1), we have that

R

Ry~1 3¢ v
1- g}—:}?exp(—l)z %U! exp(¢—A4), for some 0< ¢<A,

and

Ry

R ; R ~1 t— R, Ry
g}:}—, exp(—A)= /11?1,! exD(—ﬂ){l+ ; ?!/RL! ]E /}?L! exp(—A)g(A).

Hence,

(10)
Ry

P RLRy) =4t expllog(e() ~AlfIz= Ry + {4 exp(~ AR+ 1225 Ry =D

Ry
+[ /}eug exp<¢—/1>}1(z= Ry ze{R., R +1,,Ry}.

The doubly-winsorized Poisson pmf (10) may be written in canonical exponential family form
as

(2, Ry Ry) = exp {6z— D(6) — log(2!)},
where f=1log(A) and, for 0<¢<exp(d) and g( - ) as defined above,

exp(0)+ log(g(®), if z=R,
D(6)={ exp(0), if Rp+1<z<Ry—1
exp(&) —¢, if z=Ry.

3.2 Spatial Formulation

We shall now formulate a spatial model for the random process Z, where each component,
conditional on its neighbors, follows the distribution of a doubly-Winsorized Poisson variable.
Here, £ in (5) is the n-fold Cartesian product of the set {R;,R;+1,:-,Ry—1, Ry}.

Writing the conditional pmf of each component of Z in canonical exponential family form

gives, for =1, ,n,
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(11) p(z( s)lz( N))=exp{Az( N))z( s;)— DL z( Np)+log(z( s)!)},

where

exp{A(z( N))}+ logle(AL z2( Np)], if z( s)=R;
D z( N))={ exp{A z( N))}, if Rp+1<z(s)<Ry—1
exp{A{ z( N))}—¢, if z( s)=Ry.

We have the following results.

Lemma:
If 75=7nzandy;=0 forall 7,7=1,-,n, then

211 Z,’?;}Z( s;) = 1S§;Sn7/ijz( s)+ 1SzZ]Sn77iiZ( s;).
Proof:
121 Z:l”’fz( s =2( s1) ,21’71/+2( $2) Zlﬂzj+'--+2( Sn-1) Zlnn—l,j'f‘Z( Sn) ,2:171,,,

=2z( s1) ;771;"*‘2( s2) 23772;"*""—'—2( S n—1) Z_L:nﬂn—l,f

= =1
+z( ;) 12‘7721"*_""1'2( Sn-1) ;Zfﬂn—l,j"i—z( Sn) ;Z:lnnj
+z2( snp+z( sp)npept -+ 205,74

Using the conditions given on {7;4,j=1,--,n}, it is easy to verify that right hand side

becomes

IS;ISnﬂ,-,-Z( s+ 15;3,,”’32( s;). %

Proposition:
Given a set of doubly-Winsorized Poisson pmfs of the form (11), a valid joint distribution

of the form (1) exists, and may be identified using a negpotential function (2) constructed
from equations (3) and (4) if

(12 AL 2O N) =art 2 7:2( 5),
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where 7;=7j and 7;=0if s;& N,.

Proof:
Validity of the model is verified by substitution of (11) with (12) into equation (4) with

zy= R; which yields
(13) 2( $)2( ;)G {2( s)),2( s))) =7 ;{2( s)— R }{z( s;) — R.}.

If ;=29 for all 4,j=1,---,n, then (13) is symmetric in ¢ and ;. By theorem 3 of

Kaiser and Cressie (1996), a valid joint distribution having the specified conditionals pmfs
defined as in (11) exists, and may be identified up to a normalizing constant if the
summability condition (5) is met. To verify that (5) holds, we need an expression for the
negpotential function. Substitution of (11) and (12) into equation (3) gives

(14) z2( s)GLz( s))=(a;+ R, gvﬁ)(Z( si)— Rp)—log(z( s)!)+ log(RL!).

Substitution of (13) and (14) into equation (2) and use of the Lemma given previously then
yields the negpotential function, modulo an additive constant as,

Az)= lszmz( Si)Gz(Z( Si))+ ZzlsKanz( S,‘)Z( Sj)Gi;(Z( Si).z( Sj))

= & {(af+RL§v Mz( s)—RY—log (2( s)!)
+ ls;:ls,l’?ii{z( s)— R }z(s)—R.}
- l;zSn[a’iz( s) —log(2( s)D1+ 1s§;sn7iifz( sDz( s;).

The summability condition (5) is easily verified for any real @, and #, since the joint

support set, £, is finite with (Ry— R;+1)” elements.
¥

As seen from the proof of this proposition, the negpotential function, modulo an additive
constant, of a doubly-Winsorized Poisson auto-model is identical in form to that of a
singly-Winsorized Poisson auto-model (Kaiser and Cressie 1997) and also that of a regular
Poisson auto-model (Besag 1974). However, the conditional pmfs (11) used to formulate the
Doubly-Winsorized Poisson auto-model differ from those used in the other models, as does

the joint support set £ and, in the case of the regular Poisson auto-model, necessary
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restrictions on the dependence parameters 7 .

The regular Poisson auto-model of Besag (1974) is useful for modeling spatially dependent
count data, but requires that such dependence be negative. The Winsorized Poisson
auto-model of Kaiser and Cressie (1997) allows both negative and positive spatial dependence,
but requires that the zero vector remain a possible value of the joint support. The
doubly-Winsorized Poisson auto-model intoduced here allows exclusion of this class, while
maintaining the flexibility to model both negative and positive spatial dependence.

4. Maximum Likelihood Estimation

To render full maximum likelihood estimation feasible, it is necessary to reduce the number
of parameters allowed by a set of conditional pmfs given by (11). One way to do this is to
restrict the parameters of (12) such that e¢;,=ea, ¢=1,---,7 and 7,;=79, 7,j=1,,7n. Two
estimation methods will be introduced for a model given by conditional pmfs in (11) and
parameterized as in (12) with only parameters @ and 7. Let 6=(a,7)’, then the log

likelihood formed from the joint pmf of Z may be written, for z&4, as

(15) L(6) = Q(z|6)—log {k()},
where
Qzl0)= 2 [az( s)—log(z( s)D]+7 lsg;s’;( spa( sy,
and
(16) k(6 = tggexp{Q( 16)}.

41 Exact MLEs

MLEs can be obtained by solving the likelihood equations resulting from (15). It is easy to
show that, for 7=1,2 and j=1,2,

AL(6) _ 0 =l0) _ . 0Q(zl6)
an 36, — 96, E{ 39, }

and
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In these expression, for a real-valued function A( - ),

E{(n( z;0)} = gg[h( £ 0)exp {Q(L )}/ K O)].

Since £ is finite, derivatives in (17) and (18) may be evaluated exactly, and MLEs obtained
from standard iterative techniques such as Newton-Raphson. If the sample size #» is large,

this strategy may be prohibitively time consuming, and more efficient methods will be
required for practical applications.

4.2 Monte Carlo MLEs

An alternative approach toward maximum likelihood estimation is to form a Monte Carlo
approximation to (16) using an importance density. That is,

k(6) = ggexp{c;x 10}

I=Y°) m( t)

which can be approximated by

1 exp {Q( ¥,16)}
Fa 6) =
19) o=y 2, T2 T
where y;,-*, ¥nu is a sample from m(y), which is called an importance distribution. A

Monte Carlo approximation to log likelihood (15) is then defined as

(20) Ly(6)=6X216) — log {kx(6)}.

Monte Carlo MLEs can then be obtained by maximizing (20) with respect to 6. For
various approaches to selection of an importance distribution, see Penttinen (1984), Geyer and
Thompson (1992), and Lee and Kaiser (1997).

It may be shown that,
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@1 OLu(6) _ 9Q(216) _ p (0Q(2l0)
26; 00; M 20; !
and
(22) ﬂ’i@—):E 0 20) \p [ 3Q(210) | _ p [ 06 2l0) I 2]6)
00,0, M a0, a0; 00, 26, )

where, for a real-valued function Z( - ),

E (20} =gy UK 35 Dexp (& 3 OYm( )]

Thus, the maximizer of (20) can be obtained using a standard Newton-Raphson method, in
which exact evaluations of derivatives are replaced with Monte Carlo approximations. For
details on the use of Monte Carlo maximum likelihood for conditionally-specified models, see
Lee and Kaiser (1997).

5. Example

In this section, a small simulated example is used to compare exact and Monte Carlo
maximum likelihood estimation. Data were simulated along a regular 2x3 lattice, so that

si=(u;,v), i=1,-,6, and Z={Z(wu;, v,):i=1,--,6}. Neighborhoods were defined using
a 'nearest neighbor’ structure as

Ni={ s, s4}, No={'s1, 53, s5} N3={s3, s6},
N4={ S, 35}, st{ S2, S4, Ss}, N6={ S3, 35}.

Data values were generated using 4,000 iterations of a Gibbs sampling algorithm with
conditional pmfs (11) having ALL) parametrized as in (15) with

e;=a=0.6;7=1,--,6,and 7 ;= 9=0.03;7,7=1,---,6. Truncation values were set as
R;=1 and Ry=10. Realized values from the simulation were z( s;)=2 z( sy)=4,
2( s3)=3, z( s4)=3, z( s5)=2, and z( sg) =2. Exact MLEs were computed as described
in Section 4.1 using a standard Newton-Raphson algorithm. With R;=1, Ry=10, resultant
estimates were @=10.861 and 7=0.00457. Monte Carlo MLEs were computed as described in

section 4.2, resulting in 2=0.966and 7=0.00227. We can see somewhat significant
difference between exact MLEs and Monte Carlo MLEs because of the Monte Carlo errors in
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(20). These errors can be reduced by increasing the Monte Carlo sample size, M.

In this example, we illustrated that doubly-Winsorized Poisson auto-model introduced in
section 3 can be estimated by standard iterative estimation methods, and, if needed, by more
efficient method which approximates MLEs.
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