• Title/Summary/Keyword: Maximum Size of Aggregate

Search Result 130, Processing Time 0.03 seconds

An Experimental Stud on The Quality Improvement of High Strength Concrete using Mineral Admixtures (혼화재를 사용한 고강도콘크리트의 품질개선에 관한 실험적 연구)

  • 류영호;박정국;이보근;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.79-88
    • /
    • 1993
  • The purpose of this study is to provide a firm base for the quality improvement of high strength concrete and the development of ultra high strength concrete as well as enviromental con-servation and utilization of byproducts from industrial processing such as Fly ash and Silica fume. A comprehensive experimental study was performed to investigate the effects on the quality improvement of high strength concrete using mineral admixtures. As results, 400~500kg/$\textrm{cm}^2$ compressive strength and excellent flowability can be obtained if fly ash is replaced with cement in the range of 305. In case of using powder type silica fume, 600~700 kg/$\textrm{cm}^2$ compressive strength is showed and 600~800kg/$\textrm{cm}^2$ compressive strength cam be obtained with liquid type silica fume. But it is necessary to increase dosage of high range water reducer for flowability using powder type silica fume. Especially, higher strength concrete cam be obtained when maximum size of coarse aggregate is lower than 25mm.

  • PDF

Crack Prevention of Very-Early Strength Latex-Modified Concrete (초속경 라텍스개질 콘크리트의 균열 억제방안)

  • Lee, Bong-Hak;Choi, Pan-Gil
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.89-96
    • /
    • 2008
  • An increase in the amount of cracking in repaired concrete bridge decks using VES-LMC(Very Early Strength - Latex Modified Concrete ; below VES-LMC) has been noticed by Yun et al(1). Literature indicates that indeed many concrete bridge decks develop transverse cracking, most developing at early ages(3~7 days), many right after construction. The purpose of this study was to establish prevention of map, transverse and longitudinal cracking in VES-LMC and to provide a control methods for minimizing the occurrence of cracks. The proposed prevention against map and transverse cracking was verified by field applications. VES cement was modified, the unit cement contents was reduced into $360kg/m^3$ from $390kg/m^3$, the maximum size of coarse aggregate was increase into 19mm from 13mm, wire mesh and steel fibers were incorporated in concrete mixture. A series of variable combinations were attempted. As a results, the proposed prevention against map and transverse cracking was verified because no crack were occurred until 90 days after overlay.

  • PDF

Prediction of Fracture Energy of Concrete

  • Oh, Byung-Hwan;Jang, Seung-Yup;Byun, Hyung-Kyun
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.211-221
    • /
    • 1999
  • A method to determine the fracture energy of concrete is investigated. The fracture energy may be calculated from the area under the complete load-deflection curve which can be obtained from a stable three-point bend test. Several series of concrete beams have been tested. The Present experimental study indicates that the fracture energy decreases as the initial notch-to-beam depth ratio increases Some problems to be observed to employ the three-point bend method are discussed. The appropriate ratio of initial notch-to-beam depth to determine the fracture energy of concrete is found to be 0.5. It is also found that the influence of the self-weight of a beam to the fracture energy is very small A simple and accurate formula to predict the fracture energy of concrete is proposed.

  • PDF

Characteristics of Deformation and Shear Strength of Parallel Grading Coarse-grained Materials Using Large Triaxial Test Equipment (대형삼축시험에 의한 상사입도 조립재료의 변형 및 전단강도 특성)

  • Jin, Guang-Ri;Snin, Dong-Hoon;Im, Eun-Sang;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.57-67
    • /
    • 2009
  • Along with the advanced construction technologies, the maximum size of coarse aggregate used for dam construction ranges from several cm to 1m. Testing the original gradation samples is not only expensive but also causes many technical difficulties. Generally, indoor tests are performed on the samples with the parallel grading method after which the results are applied to the design and interpretation of the actual geotechnical structure. In order to anticipate the exact behavior characteristics for the geotechnical structure, it is necessary to understand the changes in the shear behavior. In this study, the Large Triaxial Test was performed on the parallel grading method samples that were restructured with river bed sand-gravel, with a different maximum size, which is the material that was used to construct Dam B in Korea. And the Stress - Strain characteristics of the parallel grading method samples and the characteristics of the shear strength were compared and analyzed. In the test results, the coarse-grained showed strain softening and expansion behavior of the volume, which became more obvious as the maximum size increased. The internal angle of friction and the shear strength appeared to increase as the maximum size of the parallel grading method sample increased.

Mass Spectrometric Study of Carbon Cluster Formation in Laser Ablation of Graphite at 355 nm

  • Koo, Young-Mi;Choi, Young-Ku;Lee, Kee-Hag;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.309-314
    • /
    • 2002
  • The ablation dynamics and cluster formation of $C_n^+$ ions ejected from 355 nm laser ablation of a graphite target in vacuum are investigated using a reflectron time-of-flight (RTOF) mass spectrometer. At low laser fluence, odd-numbered cluster ions with $3{\leq}n{\leq}15$ are predominantly produced. Increasing the laser fluence shifts the maximum size distribution towards small cluster ions, implying the fragmentation of larger clusters within the hot plume. The temporal evolution of $C_n^+$ ions was measured by varying the delay time of the ion extraction pulse with respect to the laser irradiation, providing significant information on the characteristics of the ablated plume. Above a laser fluence of $0.2J/cm^2$ , large cluster ions ($n{\geq}30$) are produced at relatively long delay times, indicating that atoms or small carbon clusters aggregate during plume propagation. The dependence of the intensity of ablated $C_n^+$ ions on delay time after laser irradiation shows that the most probable velocity of each cluster ion decreases with cluster size.

An Experimental Study on Manufacturing Ultra-Hihg Strength Concrete of 2300kgf/$\textrm{cm}^2$ Compressive Strength -Part 1, The Experimental Program and Preliminary Experiment- (압축강도 2300kgf/$\textrm{cm}^2$의 초고강도콘크리트의 개발에 관한 실험적 연구 -제 1보, 실험 계획 및 예비실험을 중심으로-)

  • 최희용;김규용;김진만;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.246-251
    • /
    • 1995
  • To reduce the size of structural members high strength concrete has recently been utilized for structrue such as ultra-high-rise buildings and prestressed concrete bridges in North America. and its compressive strength has gone up to 1300kgf/$\textrm{cm}^2$. In Japan, research on high-strength concrete has been undertaken on a large scale by the national enterprise so-called New RC Project, and this project purposed to develop the design compressive sstength of 1200kgf/$\textrm{cm}^2$. Considering these circumstance. the aim of this aim of this experimental study is to develop ultra-high-strength concrete with compressive stength over 2300kgf/$\textrm{cm}^2$ with domestic current materials. There are so many factors which influence on manufacturing of ultrahigh-strength concrete. The experimental factors selected in this study are mixing methods, curing methods, water-binder ratio, maximum size of coarse aggregate, and the replacement proportion of cement by silica fume. The results of this expermental study show that it is possible to develop the ultra-high-strength concrete with compressive strength over 2300kgf/$\textrm{cm}^2$.

  • PDF

An Experimental Study on Manufacturing Ultra-High Strength Concrete of 2300kg/$\textrm{cm}^2$ Compressive Strength -Part 2, The Experiment on the Manufacture of the U-H-S Concrete- (압축강도2300kg/$\textrm{cm}^2$의 초고강도콘크리트의 개발에 관한 실험적 연구 -제 2보, 초고강도콘크리트의 제조에 관한 실험을 중심으로-)

  • 김진만;최희용;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.252-255
    • /
    • 1995
  • To reduce the size of structural members, high strength concrete has recently been utilized for structure such as ultra-high-rise buildings and prestressed concrete bridges in North America. And its compressive strength has gone up to 1300kgf/$\textrm{cm}^2$. In Japan. research on high-strength concrete has been undertaken on a large scale by the national enterprise so-called New RC Project, and this Project purposed to develop the design compressive strength of 1200kgf/$\textrm{cm}^2$. Considering these circumstance. the aim of this experimental study is to develop ultra-high-strength concrete with compressive strenght over 2300kgf/$\textrm{cm}^2$ with domestic current materials. There are so many factors which influence the manufacturing of ultra-high-strength concrete. The experimental factors selected in this study are mixing methods. curing methods. water-binder ratio, maximum size of coarse aggregate, and the replacement proportion of cement by silica fume. The results of this expermental study show that it is possible to develop the ultra-high-stength concrete with compressive strength over 2300kgf/$\textrm{cm}^2$.

  • PDF

Physical and Chemical Properties of Waste Concrete Powders Originated from the Recycling Process of Waste Concrete (폐콘크리트의 재활용 공정에서 발생되는 폐콘크리트 미립분의 물리.화학적 특성)

  • Kim, Jin Man;Kang, Cheol;Kim, Ha Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.82-89
    • /
    • 2009
  • According to the great city development and the rapid growth of redevelopment project, waste concrete emission has been increased. Waste concrete powder is one of the by-product originated from the recycling of the waste concrete. The more making high quality recycled aggregate to use aggregate for concrete, the more waste concrete powder is producted relatively. Therefore, to realize the total recycling of waste concrete, development of recycling technology for waste concrete powder need very much. This technical note present the discharged process and the various properties of waste concrete powder. As the results, on the average, the maximum particle-size of waste concrete powder is less than $600{\mu}m$, and oven-dry density is less than $2.5g/cm^3$. And waste concrete powder contains more than 50% of $SiO_2$, 30% of CaO and 10% of $Al_2O_3$. Thus qualities of waste concrete powder is lower than those of high quality raw material for concrete. However, if it is processed by grading to the purpose, it will be used as resource of raw materials for construction field.

  • PDF

Analytical Study on the Strain Localization of Concrete (콘크리트의 변형률국소화에 관한 해석적 연구)

  • Song, Ha-Won;Seo, Chul
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.2
    • /
    • pp.129-138
    • /
    • 1996
  • Localization of concrete is a phenomenon such that the deformation of concrete is localized in finite region with softening behavior and it governs ultimate load of concrete. In this Paper, concrete under strain localization was modeled with localization region and non-localization region and lc~calization behavior was formulated based on averaging concept of heterogeneous material. By using the formulation, the localization phenomena of concrete under uniaxial loadings were well predicted. The analytical results show that size of localization region of concrete under uniaxial compression is three times of maximum aggregate size and the size effect of concrete is well predicted. The use of tension-softening curve obtained from direct tension test is suitable for well prediction of localization of concrete under uniaxial tension.

Understanding the Properties of Cement Mortar with Employment of Stone Dust considering Particle Size Distribution (입도분포를 고려한 석분 사용에 따른 시멘트 모르타르 성질의 변화 이해)

  • Kang, Su-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.715-723
    • /
    • 2017
  • This study investigates the properties of a high-performance cementitious composite with partial substitution of stone dust for fine aggregate. The relationship between the properties and particle size distribution was analyzed using several analytical models. Experiments were carried out to examine the flowability, rheology, and strength of cement mortars with different stone-dust replacement ratios of 0-30 wt.%. The results showed improved flowability, lower rheological parameters (yield stress and plastic viscosity), and improved strength as the amount of stone dust increased. These results are closely related to the packing density of the solid particles in the mortar. The effect was therefore estimated by introducing an optimum particle size distribution (PSD) model for maximum packing density. The PSD with a higher amount of stone dust was closer to the optimum PSD, and the optimization was quantified using RMSE. The improvement in the PSD by the stone dust was proven to affect the flowability, strength, and plastic viscosity based on several relevant analytical models. The reduction in yield stress is related to the increase of the average particle diameter when using stone dust.