• Title/Summary/Keyword: Maximum Simultaneous Switching Noise

Search Result 8, Processing Time 0.038 seconds

An Analytical Model of Maximum Simultaneous Switching Noise for Ground Interconnection Networks in CMOS Systems (CMOS 그라운드 연결망에서의 최대 동시 스위칭 잡음의 해석 모형)

  • Kim, Jung-Hak;Baek, Jong-Humn;Kim, Seok-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.3
    • /
    • pp.115-119
    • /
    • 2001
  • This paper presents an efficient and simple method for analyzine maximum simultaneous switching noise (SSN) on ground interconnection networks in CMOS systems. For the derivation of maximum SSN expression, we use ${\alpha}$-power law MOS model and Taylor's series approximation. The accuracy of the proposed method is verified by comparing the results with those of previous researches and HSPICE simulations under the contemporary process parameters and environmental conditions. The proposed method predicts the maximum SSN values more accurately when compared to existing approaches even in most practical cases such that exist some output drivers not in transition.

  • PDF

Simultaneous Switching Noise Model in Multi-Layered IC Package System with Ground Plane (그라운드 평면을 갖는 다층 구조 IC 패키지 시스템에서 동시 스위칭 노이즈 모델링)

  • 최진우;어영선
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.389-392
    • /
    • 1999
  • It is essential to estimate an effective inductance in a ground plane of muliti-layer IC package system in order to determine the simultaneous switching noise of the package. A new method to estimate the effective ground inductance in multi-layer IC package is presented. With the estimated ground plane inductance values, maximum switching noise variations according to the number of simultaneously switching drivers are investigated by developing a new SSN model. These results are verified by performing HSPICE simulation with the 0.35${\mu}{\textrm}{m}$ CMOS technology.

  • PDF

Taylor′s Series Model Analysis of Maximum Simultaneous Switching Noise for Ground Interconnection Networks in CMOS Systems (CMOS그라운드 연결망에서 발생하는 최대 동시 스위칭 잡음의 테일러 급수 모형의 분석)

  • 임경택;조태호;백종흠;김석윤
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.129-132
    • /
    • 2001
  • This paper presents an efficient method to estimate the maximum SSN (simultaneous switching noise) for ground interconnection networks in CMOS systems using Taylor's series and analyzes the truncation error that has occurred in Taylor's series approximation. We assume that the curve form of noise voltage on ground interconnection networks is linear and derive a polynomial expression to estimate the maximum value of SSN using $\alpha$-power MOS model. The maximum relative error due to the truncation is shown to be under 1.87% through simulations when we approximate the noise expression in the 3rd-order polynomial.

  • PDF

A New CMOS IC Package Design Methodology Based on the Analysis of Switching Characteristics (CMOS IC 패키지의 스위치 특성 해석 및 최적설계)

  • 박영준;어영선
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1141-1144
    • /
    • 1998
  • A new design methodology for the shortchannel CMOS IC-package is presented. It is developed by representing the package inductance with an effective lumpedinductance. The worst case maximum-simultaneous-switching noise (SSN) and gate propagation delay due to the package are modeled in terms of driver geometry, the maximum number of simultaneous switching drivers, and the effective inductance. The SSN variations according to load capacitances are investigated with this model. The package design techniques based on the proposed guidelines are verified by performing HSPICE simulations with the $0.35\mu\textrm{m}$ CMOS model parameters.

  • PDF

Estimation of Maximum Simultaneous Switching Noise for Ground Interconnection Networks in CMOS Systems (CMOS그라운드 연결망에서의 최대 동시 스위칭 잡음 해석 방법)

  • 임경택;백종흠;김석윤
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.51-54
    • /
    • 2000
  • This paper presents an efficient method for estimating maximum simultaneous switching noise(SSN) of ground interconnection networks in CMOS systems. For the derivation of maximum SSN expression we use a-power law MOS model and an iterative method to reduce error that may occur due to the assumptions used in the derivation process. The accuracy of the proposed method is verified by comparing the results with those of previous researches and HSPICE simulations under the present process parameters and environmental conditions. Our method predicts the maximum SSN values more accurately as compared to existing approaches even in more practical cases such that there exist some of output drivers not in transition.

  • PDF

Analyzing the Impact of Supply Noise on Jitter in GBPS Serial Links on a Merged I/O-Core Power Delivery Network

  • Tan, Fern-Nee;Lee, Sheng Chyan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.69-74
    • /
    • 2013
  • In this paper, the impact of integrating large number of I/O (Input-Output) and Core power Delivery Network (PDN) on a 6 layers Flip-Chip Ball Grid Array (FCBGA) package is investigated. The impact of core induced supply noise on high-speed I/O interfaces, and high-speed I/O interface's supply noise coupling to adjacent high-speed I/O interfaces' jitter impact are studied. Concurrent stress validation software is used to induce SSO noise on each individual I/O interfaces; and at the same time; periodic noise is introduced from Core PDN into the I/O PDN domain. In order to have the maximum coupling impact, a prototype package is designed to merge the I/O and Core PDN as one while impact on jitter on each I/O interfaces are investigated. In order to understand the impact of the Core to I/O and I/O to I/O noise, the on-die noise measurements were measured and results were compared with the original PDN where each I/O and Core PDN are standalone and isolated are used as a benchmark.

Modeling of Arbitrary Shaped Power Distribution Network for High Speed Digital Systems

  • Park, Seong-Geun;Kim, Jiseong;Yook, Jong-Gwan;Park, Han-Kyu
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.324-327
    • /
    • 2002
  • For the characterization of arbitrary shaped printed circuit board, lossy transmission line grid model based on SPICE netlist and analytical plane model based on the segmentation method are proposed in this paper. Two methods are compared with an arbitrary shaped power/ground plane. Furthermore, design considerations for the complete power distribution network structure are discussed to ensure the maximum value of the PDN impedance is low enough across the desired frequency range and to guide decoupling capacitor selection.

  • PDF

The SSN and Crosstalk Noise Reduction I/O Interface Scheme Using the P/N-CTR Code (P/N-CTR 코드를 사용한 SSN과 누화 잡음 감소 I/O 인터페이스 방식)

  • Kim, Jun-Bae;Gwon, O-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.4
    • /
    • pp.302-312
    • /
    • 2001
  • As the data transfer rate between chips gets higher, both crosstalk and SSN (Simultaneous Switching Noise) deteriorate seriously the performance of a system. The proposed interface scheme uses P-CTR and N-CTR(Positive/Negative Constant Transition Rate) which encodes data at both falling and rising edges, where the transition directions of N-CTR and P-CTR are opposite. And the proposed bus system places two P-CTR drivers and two N-CTR drivers alternatively. In the proposed P/N-CTR interface scheme, the signals of neighboring interconnection lines at both sides of a bus will not switch simultaneously in the same direction, which leads to reduction in the maximum crosstalk and SSN compared to conventional interfaces. For verification of noise reduction of the proposed interface scheme, the scheme is applied to several kinds of bit-wide buses with various interconnection structures, and HSPICE simulation was performed with 0.35 ${\mu}{\textrm}{m}$ SPICE parameters. The simulation results show that in the 32-bit or less wide bus, the maximum SSN and crosstalk are reduced to at least 26.78% and 50%, respectively in comparison with the conventional interface scheme.

  • PDF