• 제목/요약/키워드: Maximal singular integral

검색결과 9건 처리시간 0.022초

QUANTITATIVE WEIGHTED BOUNDS FOR THE VECTOR-VALUED SINGULAR INTEGRAL OPERATORS WITH NONSMOOTH KERNELS

  • Hu, Guoen
    • 대한수학회보
    • /
    • 제55권6호
    • /
    • pp.1791-1809
    • /
    • 2018
  • Let T be the singular integral operator with nonsmooth kernel which was introduced by Duong and McIntosh, and $T_q(q{\in}(1,{\infty}))$ be the vector-valued operator defined by $T_qf(x)=({\sum}_{k=1}^{\infty}{\mid}T\;f_k(x){\mid}^q)^{1/q}$. In this paper, by proving certain weak type endpoint estimate of L log L type for the grand maximal operator of T, the author establishes some quantitative weighted bounds for $T_q$ and the corresponding vector-valued maximal singular integral operator.

WEIGHTED ESTIMATES FOR CERTAIN ROUGH SINGULAR INTEGRALS

  • Zhang, Chunjie
    • 대한수학회지
    • /
    • 제45권6호
    • /
    • pp.1561-1576
    • /
    • 2008
  • In this paper we shall prove some weighted norm inequalities of the form $${\int}_{R^n}\;|Tf(x)|^pu(x)dx\;{\leq}\;C_p\;{\int}_{R^n}\;|f(x)|^pNu(x)dx$$ for certain rough singular integral T and maximal singular integral $T^*$. Here u is a nonnegative measurable function on $R^n$ and N denotes some maximal operator. As a consequence, some vector valued inequalities for both T and $T^*$ are obtained. We shall also get a boundedness result of T on the Triebel-Lizorkin spaces.

WEIGHTED ESTIMATES FOR CERTAIN ROUGH OPERATORS WITH APPLICATIONS TO VECTOR VALUED INEQUALITIES

  • Liu, Feng;Xue, Qingying
    • 대한수학회지
    • /
    • 제58권4호
    • /
    • pp.1035-1058
    • /
    • 2021
  • Under certain rather weak size conditions assumed on the kernels, some weighted norm inequalities for singular integral operators, related maximal operators, maximal truncated singular integral operators and Marcinkiewicz integral operators in nonisotropic setting will be shown. These weighted norm inequalities will enable us to obtain some vector valued inequalities for the above operators.

ROUGH MAXIMAL SINGULAR INTEGRAL AND MAXIMAL OPERATORS SUPPORTED BY SUBVARIETIES

  • Zhang, Daiqing
    • 대한수학회보
    • /
    • 제58권2호
    • /
    • pp.277-303
    • /
    • 2021
  • Under the rough kernels Ω belonging to the block spaces B0,qr (Sn-1) or the radial Grafakos-Stefanov kernels W����(Sn-1) for some r, �� > 1 and q ≤ 0, the boundedness and continuity were proved for two classes of rough maximal singular integrals and maximal operators associated to polynomial mappings on the Triebel-Lizorkin spaces and Besov spaces, complementing some recent boundedness and continuity results in [27, 28], in which the authors established the corresponding results under the conditions that the rough kernels belong to the function class L(log L)α(Sn-1) or the Grafakos-Stefanov class ����(Sn-1) for some α ∈ [0, 1] and �� ∈ (2, ∞).

SINGULAR AND MARCINKIEWICZ INTEGRAL OPERATORS ON PRODUCT DOMAINS

  • Badriya Al-Azri;Ahmad Al-Salman
    • 대한수학회논문집
    • /
    • 제38권2호
    • /
    • pp.401-430
    • /
    • 2023
  • In this paper, we prove Lp estimates of a class of singular integral operators on product domains along surfaces defined by mappings that are more general than polynomials and convex functions. We assume that the kernels are in L(log L)2 (𝕊n-1 × 𝕊m-1). Furthermore, we prove Lp estimates of the related class of Marcinkiewicz integral operators. Our results extend as well as improve previously known results.

Lp-BOUNDEDNESS FOR THE COMMUTATORS OF ROUGH OSCILLATORY SINGULAR INTEGRALS WITH NON-CONVOLUTION PHASES

  • Wu, Huoxiong
    • 대한수학회지
    • /
    • 제46권3호
    • /
    • pp.577-588
    • /
    • 2009
  • In this paper, the author studies the k-th commutators of oscillatory singular integral operators with a BMO function and phases more general than polynomials. For 1 < p < $\infty$, the $L^p$-boundedness of such operators are obtained provided their kernels belong to the spaces $L(log+L)^{k+1}(S^{n-1})$. The results of the corresponding maximal operators are also established.

[Lp] ESTIMATES FOR A ROUGH MAXIMAL OPERATOR ON PRODUCT SPACES

  • AL-QASSEM HUSSAIN MOHAMMED
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.405-434
    • /
    • 2005
  • We establish appropriate $L^p$ estimates for a class of maximal operators $S_{\Omega}^{(\gamma)}$ on the product space $R^n\;\times\;R^m\;when\;\Omega$ lacks regularity and $1\;\le\;\gamma\;\le\;2.\;Also,\;when\;\gamma\;=\;2$, we prove the $L^p\;(2\;{\le}\;P\;<\;\infty)\;boundedness\;of\;S_{\Omega}^{(\gamma)}\;whenever\;\Omega$ is a function in a certain block space $B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ (for some q > 1). Moreover, we show that the condition $\Omega\;{\in}\;B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ is nearly optimal in the sense that the operator $S_{\Omega}^{(2)}$ may fail to be bounded on $L^2$ if the condition $\Omega\;{\in}\;B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ is replaced by the weaker conditions $\Omega\;{\in}\;B_q^{(0,\varepsilon)}(S^{n-1}\;\times\;S^{m-1})\;for\;any\;-1\;<\;\varepsilon\;<\;0.$

DUALITIES OF VARIABLE ANISOTROPIC HARDY SPACES AND BOUNDEDNESS OF SINGULAR INTEGRAL OPERATORS

  • Wang, Wenhua
    • 대한수학회보
    • /
    • 제58권2호
    • /
    • pp.365-384
    • /
    • 2021
  • Let A be an expansive dilation on ℝn, and p(·) : ℝn → (0, ∞) be a variable exponent function satisfying the globally log-Hölder continuous condition. Let Hp(·)A (ℝn) be the variable anisotropic Hardy space defined via the non-tangential grand maximal function. In this paper, the author obtains the boundedness of anisotropic convolutional ��-type Calderón-Zygmund operators from Hp(·)A (ℝn) to Lp(·) (ℝn) or from Hp(·)A (ℝn) to itself. In addition, the author also obtains the duality between Hp(·)A (ℝn) and the anisotropic Campanato spaces with variable exponents.

DEGENERATE VOLTERRA EQUATIONS IN BANACH SPACES

  • Favini, Angelo;Tanabe, Hiroki
    • 대한수학회지
    • /
    • 제37권6호
    • /
    • pp.915-927
    • /
    • 2000
  • This paper is concerned with degenerate Volterra equations Mu(t) + ∫(sub)0(sup)t k(t-s) Lu(s)ds = f(t) in Banach spaces both in the hyperbolic case, and the parabolic one. The key assumption is played by the representation of the underlying space X as a direct sum X = N(T) + R(T), where T is the bounded linear operator T = ML(sup)-1. Hyperbolicity means that the part T of T in R(T) is an abstract potential operator, i.e., -T(sup)-1 generates a C(sub)0-semigroup, and parabolicity means that -T(sup)-1 generates an analytic semigroup. A maximal regularity result is obtained for parabolic equations. We will also investigate the cases where the kernel k($.$) is degenerated or singular at t=0 using the results of Pruss[8] on analytic resolvents. Finally, we consider the case where $\lambda$ is a pole for ($\lambda$L + M)(sup)-1.

  • PDF