• Title/Summary/Keyword: Max-Flow

Search Result 212, Processing Time 0.028 seconds

Lean burn Combustion Characteristics of Direct Injection Gasoline Engine with Swirl Control Valve (스월 제어 밸브를 적용한 직접분사식 가솔린 엔진의 희박연소 특성)

  • Lee, Min-Ho;Moon, Hak-Hoon;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • The performance characteristics of lean burn system in gasoline engine are mainly affected by the air-fuel mixture in cylinder, gas exchange process of manifold system, exhaust emission of engine, and the electronic engine control system. In order to obtain the effect of performance factors on the optimum conditions of lean burn engine, this study deal with the behavior of mixture formation, gas flow characteristics of air, flow and evaporation analysis of spray droplet in cylinder, vaporization and burning characteristics of lean mixture in the engine, and the control performance of electronic engine control system. The optimum flow conditions were investigated with the swirl and tumble flows in the combustion chamber with swirl control valve. The performance characteristics and optimum condition of flow field in intake system were analyzed by the investigation of inlet flow of air and combustion stabilization on cylinder.

  • PDF

CFD Simulation of NACA 2412 airfoil with new cavity shapes

  • Merryisha, Samuel;Rajendran, Parvathy;Khan, Sher Afghan
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.2
    • /
    • pp.131-148
    • /
    • 2022
  • The paper presents the surface-modified NACA 2412 airfoil performance with variable cavity characteristics such as size, shape and orientation, by numerically investigated with the pre-validation study. The study attempts to improve the airfoil aerodynamic performance at 30 m/s with a variable angle of attack (AOA) ranging from 0° to 20° under Reynolds number (Re) 4.4×105. Through passive surface control techniques, a boundary layer control strategy has been enhanced to improve flow performance. An intense background survey has been carried out over the modifier orientation, shape, and numbers to differentiate the sub-critical and post-critical flow regimes. The wall-bounded flows along with its governing equations are investigated using Reynolds Average Navier Strokes (RANS) solver coupled with one-equational transport Spalart Allmaras model. It was observed that the aerodynamic efficiency of cavity airfoil had been improved by enhancing maximum lift to drag ratio ((l/d) max) with delayed flow separation by keeping the flow attached beyond 0.25C even at a higher angle of attack. Detailed investigation on the cavity distribution pattern reveals that cavity depth and width are essential in degrading the early flow separation characteristics. In this study, overall general performance comparison, all the cavity airfoil models have delayed stalling compared to the original airfoil.

An Experimental Study on the Characteristics of Twin Spray Ejected from Two Swirl Spray Nozzles (두개의 와류분무 노즐로부터 분사되는 이중분무의 분무특성에 관한 실험적 연구)

  • 김인구;이상룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.359-372
    • /
    • 1988
  • Characteristics of twin spray ejected from two swirl spray nozzles were studied experimentally. By using a patternator for measuring volumetric flux of drop flow at various locations inside the spray, variation of the twin spray pattern along the axial direction was studied with changing the injection pressure and the distance between the nozzles. The general findings from the experiments are as follows: (i) as axial distance from the nozzles increases, the spray pattern in x-z plane which contains both nozzles changes significantly. On the other hand the spray pattern in y-z plane which passes the midpoint between two nozzles remains almost unchanged at outer region as axial distance and injection pressure vary; (ii) at the downstream of the twin spray with spray interaction, the maximum volumetric flux in y-z plane (q$_{max}$)$_{y}$, has tendency to become larger than that of x-z plane (q$_{max}$)$_{x}$, due to a characteristic(hollow cone shape) of the constituting swirl sprays, and this trend is pronounced at higher injection pressure since the cross-section of each single spray remains hollow at the longer axial distance from each nozzle with higher injection pressure; (iii) at a certain axial distance from the nozzles, the cross-sectional shape of the boundary of the twin spray tends to be circular similar to that of the single spray with twice the flow-rate, and that distance is not proportional to the distance between two nozzles; (iv) though there are some collisions between droplets from each nozzles of twin spray, in present experimental range, the flow pattern of gas including the entrainment effect plays the key role in spray interaction.n.ion.n.

Performance Analysis of Flow Control Method Using Virtual Switchs on ATM (ATM에서 가상 스위치를 이용한 흐름 제어 방식의 성능 분석)

  • 조미령;양성현;이상훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.1
    • /
    • pp.85-94
    • /
    • 2002
  • EMRCA(Explicit Max_min Rate Control Algorithm) switch, which has been proposed in the ATM(Asychronous Transfer Mode) standard, controls the ABR(Available Bit Rate) service traffic in the ATM networks. The ABR service class of ATM networks uses a feedback control mechanism to adapt to varying link capacities. The VS/VD(Virtual Source/Virtual Destination) technique offers the possibility to segment the otherwise end-to-end ABR control loop into separate loops. The improved feedback delay and the control of ABR traffic inside closed segments provide a better performance and QoS(Quality of Service) for ABR connections with respect to throughput, delay, and jitter. This paper is study of an ABR VS/VD flow control method. Linear control theory offers the means to derive correct choices of parameters and to assess performance issues, like stability of the system, during the design phase. The performance goals are a high link utilization, fair bandwidth distribution and robust operation in various environments, which are verified by discrete event simulations. The major contribution of this work is the use of linear control theory to model and design an ABR flow control method tailored for the special layout of a VS/VD switch, the simulation shows that this techniques better than conventional method.

  • PDF

Numerical analysis of matural convection in inclined rectagular cavity using F.E.M. (유한요소법을 이용한 경사진 직사각형 단면 공동내부의 자연대류현상의 수치해석)

  • ;;Lee, Dong Ho
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.329-337
    • /
    • 1981
  • Natural convection within inclined high aspect-ratio rectangular cavity was analysed by using finite element method. For a cavity of sapect-ratio 20, the flow patterns of secondary vortices and the heat transfer characteristics on the wall were obtained with the variation of tilt angle as well as Ra and Pr. The observation on the governing equations shows that the increase of Ra/Pr and the existence of nonzero tilt angle make the flow pattern more complicated and so it becomes difficult to obtain converging solution. The max. value of Ra/Pr attained in this study was 3x10$\^$4/at 0$\^$0/ tilt angle and 1.1x10$\^$4/ at 45.deg. tilt angle for aspect ratio 20and Pr=0.7. Finally an empirical formula for Nusselt number which can accout for the effect of tilt angle is obtained for laminar flow regime.

A Study on the Fuzzy Maximal Flow using Interger (정수를 이용한 퍼지최대흐름에 관한 연구)

  • 신재환;김창은;심종칠
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.32
    • /
    • pp.7-16
    • /
    • 1994
  • In the existing deterministic network, the capacity of each arc has determined property. But actually, it may be a property which cannot be determined. Even though it should be determining, it contains many errors. In treating these kinds of problems, fuzzy theory is suitable. Recently, due to development the study on complicated and indefinited systems which contain fuzziness could be possible. This paper includes that the capacity of each arc and the goal quantity with nonnegative integer have the fuzziness. The object is to search the new mathod of fuzzy maximal flow quantity. If the degree of arc membership function of the minimal cut part is not larger than that of arc membership function of the part except the minimal cut, first calcurate nonfuzzy maximal flow quantity, and then can compute the optimal quantity the 3rd step at one time with Max-Min fuzzy operating in the arc capacity of minimal cut and the goal quantity without a great number of recalculation.

  • PDF

A Numerical Study for the Three-Dimensional Fluid Flow Past Tube Banks and Comparison with PIV Experimental Data

  • Ha, Man-Yeong;Kim, Seung-Hyeon;Kim, Kyung-Chun;Son, Young-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2236-2249
    • /
    • 2004
  • The analysis for the three-dimensional fluid flow past tube banks arranged in equilateral-triangular form at Re$\_$max/=4,000 is carried out using a large eddy simulation technique. The governing equations for the mass and momentum conservation are discretized using the finite volume method. Parallel computational techniques using MPI (Message Passing Interface) are implemented in the present computer code. The computation time decreases linearly proportional to the number of used CPUs in the present parallel computation. We obtained the time-averaged streamwise and cross-streamwise velocities and turbulent intensities. The present numerical results are compared with the PIV experimental data and agree generally well with the experimental data.

Fabrication and Performance Evaluation of a Micro Separation Chip of Magnetic Beads Using Magnetophoretic Flow (자기영동을 이용한 자성입자 분리 마이크로 칩 제작 및 성능평가)

  • Go, Jeung-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.392-397
    • /
    • 2007
  • We developed a microfluidic platform able to control the trap and release of magnetic beads used for separation of a specific biomolecules. The magnetic beads can be trapped and released conditionally by controlling the difference between the Stokes force induced by the fluid flow and magnetic force resulting from a permanent magnet. The permanent magnet of CoNiP alloy is electroplated. It is characterized to have the 1369 Oe of coercivity, 1762 Gauss of remanence, and 0.603MGOe of (BH)max. Through the experimental and numerical investigation, the magnetic beads are trapped under the flow velocity of 17 ${\mu}m/s$ and are released perfectly above the velocity of 174 ${\mu}m/s$.

Min-Max Regret Version of an m-Machine Ordered Flow Shop with Uncertain Processing Times

  • Park, Myoung-Ju;Choi, Byung-Cheon
    • Management Science and Financial Engineering
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • We consider an m-machine flow shop scheduling problem to minimize the latest completion time, where processing times are uncertain. Processing time uncertainty is described through a finite set of processing time vectors. The objective is to minimize maximum deviation from optimality for all scenarios. Since this problem is known to be NP-hard, we consider it with an ordered property. We discuss optimality properties and develop a pseudo-polynomial time approach for the problem with a fixed number of machines and scenarios. Furthermore, we find two special structures for processing time uncertainty that keep the problem NP-hard, even for two machines and two scenarios. Finally, we investigate a special structure for uncertain processing times that makes the problem polynomially solvable.

An Efficient Implementation of Optimal Power Flow using the Alternating Direction Method (Alternating Direction Method를 이용한 최적조류계산의 분산처리)

  • Kim, Ho-Woong;Park, Marn-Kuen;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1424-1428
    • /
    • 1999
  • This paper presents a mathematical decomposition coordination method to implementing the distributed optimal power flow (OPF), wherein a regional decomposition technique is adopted to parallelize the OPT. The proposed approach is based on the Alternating Direction Method (ADM), a variant of the conventional Augmented Lagrangian approach, and makes it possible the independent regional AC-OPF for each control area while the global optimum for the entire system is assured. This paper is an extension of our previous work based on the auxiliary problem principle (APP). The proposed approach in this paper is a completely new one, however, in that ADM is based on the Proximal Point Algorithm which has long been recognized as one of the attractive methods for convex programming and min-max-convex-concave programming. The proposed method was demonstrated with IEEE 50-Bus system.

  • PDF