The Journal of Korean Institute of Communications and Information Sciences
/
v.39A
no.9
/
pp.519-527
/
2014
Adaptive arrays can minimize contributions from interferences incident onto an sensor array while preserving a signal the direction vector of which corresponds to the array steering vector to within a scalar factor. If there exist errors in the steering vector, severe performance degradation can be caused since the desired signal is misunderstood as an interference by the array. This paper presents an adaptive beamforming method which is robust against steering vector errors, exploiting a range of the desired signal direction. In the presented method, an correlation matrix of array response vectors is obtained through integration over the direction range and a minimization problem is formulated using some eigenvectors of the correlation matrix such that a more accurate steering vector than initially given one can be found. The minimization problem is transformed into a relaxed SDP (semidefinite program) problem, which can be effectively solved since it is a sort of convex optimization. Simulation results show that the proposed method outperforms existing ones such as ORM (outside-range-based method) and USM (uncertainty-based method).
In an effort to enhance the quality of feature vector classification and thereby reduce the recognition error rate of the speaker-independent speech recognition, we employ the Mahalanobis distance in the calculation of the similarity measure between feature vectors. It is assumed that the metric matrix of the Mahalanobis distance be diagonal for the sake of cost reduction in memory and time of calculation. We propose that the diagonal elements be given in terms of the variations of the feature vector components. Geometrically, this prescription tends to redistribute the set of data in the shape of a hypersphere in the feature vector space. The idea is applied to the speech recognition by hidden Markov model with fuzzy vector quantization. The result shows that the recognition is improved by an appropriate choice of the relevant adjustable parameter. The Viterbi score difference of the two winners in the recognition test shows that the general behavior is in accord with that of the recognition error rate.
We investigate neural network image reconstruction for magnetic particle imaging. The network performance strongly depends on the convolution effects of the spectrum input data. The larger convolution effect appearing at a relatively smaller nanoparticle size obstructs the network training. The trained single-layer network reveals the weighting matrix consisting of a basis vector in the form of Chebyshev polynomials of the second kind. The weighting matrix corresponds to an inverse system matrix, where an incoherency of basis vectors due to low convolution effects, as well as a nonlinear activation function, plays a key role in retrieving the matrix elements. Test images are well reconstructed through trained networks having an inverse kernel matrix. We also confirm that a multi-layer network with one hidden layer improves the performance. Based on the results, a neural network architecture overcoming the low incoherence of the inverse kernel through the classification property is expected to become a better tool for image reconstruction.
The cascaded H Bridge (CHB) multilevel inverter (MLI) is popular among the classical MLI topologies due to its modularity and reliability. Although space vector modulation (SVM) is the most suitable modulation scheme for MLIs, it has not been used widely in industry due to the higher complexity involved in its implementation. In this paper, a simple and novel generalized SVM algorithm is proposed, which has both reduced time and space complexity. The proposed SVM involves the generalization of both the duty cycle calculation and switching sequence generation for any n-level inverter. In order to generate the gate pulses for an inverter, a generalized switch matrix (SM) for the CHB inverter is also introduced, which further simplifies the algorithm. The algorithm is tested and verified for three-phase, three-level and five-level CHB inverters in simulations and hardware implementation. A comparison of the proposed method with existing SVM schemes shows the superiority of the proposed scheme.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.34
no.1
/
pp.81-88
/
2006
In this paper, we analyze a noncommutativity error that is not able to be compensated with integrating gyro outputs in RLG-based INS. The system can suffer from some motion known as RLG dithering motion, coning motion, ISA motion derived by an AV mount and vehicle real dynamic motion. So these motions are a cause of the noncommutativity error, the system error derived by each motion has to be analyzed. For the analysis, a relation between rotation vector and gyro outputs is introduced and applied to define the coordinate transformation matrix and the angular vector.
This paper proposes a modified space-vector pulse width modulation (PWM) strategy which can restrict the common-mode voltage for three-phase to three-phase matrix converter and still keep sinusoidal input and output waveforms and unity power factor at the input side. The proposed control method has been developed based on contributing the appropriate space vectors instead of using zero space vectors. The advantages of this proposed method is to reduce the peak value of common-mode voltage to 42% beside the lower high harmonic components as compared to the conventional SVM method. Hence, the new table is also presented with the new space vector rearrangement. Furthermore, the voltage transfer ratio is unaffected by the proposed method. A simulation of the overall system has been carried out to validate the advantages of the proposed method.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.715-717
/
2005
Support vector machine(SVM)은 최근 각광받는 기계학습 방법 중 하나로서, kernel function 이라는 사상(mapping)을 이용하여 입력 공간의 벡터를 classification이 용이한 특징 (feature) 공간의 벡터로 변환하는 것을 근간으로 한다. SVM은 이러한 특징 공간에서 두 클래스를 구분 짓는 hyperplane을 일련의 최적화 방법론을 사용하여 찾아내며, 주어진 문제가 convex problem 인 경우 항상 global optimal solution 을 보장하는 등의 장점을 지닌다. 한편 bioinformatics 연구에서 주로 사용되는 데이터는 측정 오류 등 일련의 오류를 포함하고 있으며, 이러한 오류는 기계학습 방법론이 어떤 decision boundary를 찾아내는가에 영향을 끼치게 된다. 특히 SVM의 경우 이러한 오류는 특징 공간 벡터간의 관계를 나타내는 Gram matrix를 변화로 나타나게 된다. 본 연구에서는 입력 공간에 오류가 발생할 때 그것이 SVM 의 decision boundary를 어떻게 변화시키는가를 대표적인 두 가지 kernel function, 즉 linear kernel과 Gaussian kernel에 대해 분석하였다. Wisconsin대학의 유방암(breast cancer) 데이터에 대해 실험한 결과, 데이터의 오류에 따른 SVM 의 classification 성능 변화 양상을 관찰하여 커널의 종류에 따라 SVM이 어떠한 특성을 보이는가를 밝혀낼 수 있었다. 또 흥미롭게도 어떤 조건 하에서는 오류가 크더라도 오히려 SVM 의 성능이 향상되는 것을 발견했는데, 이것은 바꾸어 생각하면 Gram matrix 의 일부를 변경하여 SVM 의 성능 향상을 꾀할 수 있음을 나타낸다.
We propose a systematic method to select the master states, which are retained in the reduced model after the order reduction process. The proposed method is based on the fact that the range space of right eigenvector matrix is spanned by orthogonal base vectors, and tries to keep the orthogonality of the submatrix of the base vector matrix as much as possible during the reduction process. To quentify the skewness of that submatrix, we define "Absolute Singularity Factor(ASF)" based on its singular values. While the degree of observability is concerned with estimation error of state vector and up to n'th order derivatives, ASF is related only to the minimum state estimation error. We can use ASF to evaluate the estimation performance of specific partial measurements compared with the best case in which all the state variables are identified based on the full measurements. A heuristic procedure to find suboptimal master states with reduced computational burden is also proposed. proposed.
The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.7C
/
pp.635-639
/
2009
In this paper, we show that any two Hadamard matrices of the same size are equivalent if they have the property that the rows of each Hadamard matrix are closed under binary vector addition. One of direct consequences of this result is that the equivalence between cyclic Hadamard matrices constructed by maximal length sequences and Walsh-Hadamard matrix of the same size generated by Kronecker product can be established.
The solution of large sparse linear systems is one of the most important problems in large scale scientific computing. Among the many methods developed, the preconditioned Krylov subspace methods are considered the preferred methods. Selecting a suitable preconditioner with appropriate parameters for a specific sparse linear system presents a challenging task for many application scientists and engineers who have little knowledge of preconditioned iterative methods. The prediction of ILU type preconditioners was considered in [27] where support vector machine(SVM), as a data mining technique, is used to classify large sparse linear systems and predict best preconditioners. In this paper, we apply the data mining approach to the sparse approximate inverse(SAI) type preconditioners to find some parameters with which the preconditioned Krylov subspace method on the linear systems shows best performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.