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DATA MINING AND PREDICTION OF SAI TYPE MATRIX
PRECONDITIONER

SANG-BAE KIM,* SHUTING XU AND JUN ZHANG

ABSTRACT. The solution of large sparse linear systems is one of the most
important problems in large scale scientific computing. Among the many
methods developed, the preconditioned Krylov subspace methods are con-
sidered the preferred methods. Selecting a suitable preconditioner with ap-
propriate parameters for a specific sparse linear system presents a challeng-
ing task for many application scientists and engineers who have little knowl-
edge of preconditioned iterative methods. The prediction of ILU type pre-
conditioners was considered in [27] where support vector machine(SVM),
as a data mining technique, is used to classify large sparse linear systems
and predict best preconditioners. In this paper, we apply the data min-
ing approach to the sparse approximate inverse(SAI) type preconditioners
to find some parameters with which the preconditioned Krylov subspace
method on the linear systems shows best performance.

AMS Mathematics Subject Classification :65F10, 65F50, 68P20
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1. Introduction

The solution of large sparse linear systems is one of the most important prob-
lems in large scale scientific computing. For the past 50 years, many direct and
iterative methods have been developed for this purpose[7, 16]. Among them,
preconditioned Krylov subspace methods[16] with a Krylov iterative solver and
a preconditioner are considered the preferred methods. The preconditioners
employed in the preconditioned iterative solvers usually determine the overall
convergence rate of the iterative procedure[28]. However, selecting a suitable
preconditioner for a specific sparse matrix arising from a particular application
to achieve fast convergence is the combination of art and science, and presents
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a challenging problem for many application scientists and engineers who have
little knowledge of the preconditioned iterative methods[11, 12, 14].

There is an enlarging gap between the development of more and more so-
phisticated preconditioned iterative solvers by the computational linear algebra
community and the ability to understand and to properly use these solvers by
the application scientists and engineers to solve their more and more complex
modeling and simulation problems. High performance computers and numer-
ical algorithms will be less useful if they are not matched with the intended
application problems. In the context of preconditioning, the use of a wrong
preconditioner may cause an iteration process to diverge.

There has been a considerable amount of effort made by several researchers
and organizations to collect various sparse matrices in order to use them or
for test purposes. The National Institute of Standard and Technology (NIST)
has been playing a leading role in this endeavor and currently hosts one of the
largest such repositories: MatrixMarket[15]. Several other collections have been
contributed by engineers, scientists and numerical analyst, e.g., the well-known
Harwell-Boeing sparse matrix collection and the University of Florida sparse ma-
trix collections[6]. NIST has done some categorization work and published some
preliminary information on these matrices. For each matrix this information
includes its type, dimensions, condition number, nonzero structure, etc. Ma-
trixMarket is becoming a standard source of sparse matrices for testing various
direct and iterative solution methods. However, there is no information regard-
ing which matrix can be solved by what method using what parameters. Such
information would be extremely helpful for application scientists and engineers
as it would enable them to choose suitable sparse matrix solvers for certain class
of applications.

It is attractive to use machine learning techniques to help application scientists
and engineers to choose suitable preconditioners for their particular application
problems. Sparse matrices arising from different applications-do have certain
different features. These features may be represented by the sizes and the loca-
tions of their nonzero entries. If we can determine and extract these matrices
features, and study and learn how the performance of the preconditioned Krylov
subspace methods is related to these matrix features, we may be able to predict
the performance of these preconditioned iterative methods to solve other sparse
matrices that may have the same or similar features.

The idea of using matrix features and data mining techniques to predict the
possibility of solving a sparse matrix by some preconditioners was first proposed
in [29]. The process of extracting sparse matrix features and the identified 66
matrix features are described in {20, 22, 21]. Data mining techniques with matrix
features were applied for predicting the condition numbers of sparse matrices [23,
25] and for predicting the solving status of sparse matrices by matrix structure-
based incomplete LU type preconditioners such as ILU(0), ILU(k) and ILUT
[24, 26, 27]. ILUT is different from ILU(0), ILU(k) in point of view that it needs
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two preset parameters and it only works well under some sets of values of these
parameters. Different sparse linear systems usually can be solved with different
ILUT parameters.

In this paper, we study another type of preconditioner, i.e. sparse approxi-
mate inverse (SAI) [4, 8] to solve sparse linear systems. SAI preconditioner has
two preset parameters like ILUT. These two parameters are related to the spar-
sity pattern and filtering tolerance which will be explained in Section 2. Qur aim
is to predict with which parameter sets the sparse systems can by solved by SAL
The SAI preconditioners possess high degree of parallelism while the ILU [16] is
inherently sequential in both the construction and the application phases. The
performance of SAI preconditioner depends on the choice of the sparsity pat-
tern. The static and dynamic sparsity pattern algorithms have been proposed
[4, 5, 8, 13]. We apply only the static sparsity pattern scheme because the dy-
namic sparsity pattern algorithm changes the parameter in the process of solver
iteration, while we want to find some a priori parameters of SAI preconditioner
with which the iterative solver achieves best performance.

This paper is organized as follows. In Section 2, we explain the concept of
sparse approximate inverse preconditioner. We can see what kind of parameters
are involved in the preconditioner. Section 3 describes the parameter space
relating to the SAI preconditioner. The experiments are carried out and the
results are reported in Section 4. The conclusion of this paper is in Section 5.

2. Sparse approximate inverse preconditioner

In order for a preconditioner to be efficient, the construction of the precondi-
tioning matrix M should be cheap and the inverse of M or the solution with the
matrix M should be inexpensive. On parallel computers, it is ideal that both
the preconditioner construction {setup) phase and the preconditioner applica-
tion (solution) phase posses high degree of parallelism. So the main difficulty
in front of us is to find a high quality preconditioner with good parallelism so
that the large linear problems can be solved efficiently on the high performance
distributed memory parallel computers.

There are many methods to compute the preconditioner M. One popular
method is called the incomplete LU factorizations (ILU(k), ILUT) [16]. The
ILU-type preconditioning techniques try to compute an approximation of the
original matrix A and transform the linear system

Az = b, (1)
into
(LUY YAz = (LU)™ . (2)

Here the preconditioner LU consists of a lower triangular matrix (L) and an
upper triangular matrix (U}, and LU =~ A. The ILU-type preconditioner is
widely used and shown to be efficient and effective for certain kind of problems.
However, since the ILU preconditioners are based on various Gauss elimination
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[16], they are inherently sequential in both the construction and the application
phases and are difficult to implement on parallel platforms.

The sparse approximate inverse (SAI) preconditioner is an interesting alter-
native of ILU-type preconditioner [1, 2]. Instead of computing an approximation
of A, the SAI-type preconditioning techniques try to compute a sparse approxi-
mation of A~! directly. In this case, the preconditioned system is

MAz = Mb, (3)

where M ~ A~1L.

The sparse approximate inverse technique is based on the idea of computing a
preconditioning matrix M which approximates A~! in the Frobenius norm [4, 8].
Since we want M to be a good approximation to A}, it is ideal if MA =~ I.
This approach is to approximate A~! from the left, and M is called the left
preconditioner. It is also possible to approximate A~! from the right, so that
AM = I, which is termed as the right preconditioner. In the case of the right
preconditioning, the equivalent preconditioned system is

AMy =b, and =My (4)

In fact, the right preconditioning approach is easier for us to illustrate the Frobe-
nius norm minimization idea, which will be described in detail in the following
paragraphs.

In order to have AM =~ I, we want to minimize the functional

F(M) = min[|AM ~ 1| )

for all possible nonsingular square matrices M of order n, with respect to a
certain norm. Without any constraint on M, the minimization problem (5) has
an obvious solution, i.e., M = A~!. This obvious solution is undesirable for at
least two reasons. First, the computational cost for solving the unconstrained
minimization problem (5) is prohibitively high. Second, for most sparse matrices
A, their inverses A~! are dense, which will cause memory problems for large scale
matrices encountered in many practical applications.

Thus we are interested in a constrained minimization such that M has a
certain sparsity pattern (nonzero structure), i.e., only certain entries of M are
allowed to be nonzero. Given a set of sparsity patterns €2, we minimize the
functional

F(M) = win | AM — 1. (6)

Although any norm can potentially be used in the above definition, a partic-
ularly convenient norm is the Frobenius norm which is defined for a matrix

A = (aij)nxn as [|Allr = /327 ,=, aZ; [16]. With the Frobenius norm, the min-

imization problem (6) is decoupled into 7 independent subproblems and can
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proceed as (using square for convenience)

n n
IAM — I||7 = Y II(AM = Dex |3 = [ Amy, — ex 3, (7)
k=1 k=1
where my, and ey are the kth column of M and that of I, respectively. It follows

that the minimization problem (6) is equivalent to minimizing the individual
functions

|Amy — exllsy,  k=1,2,....n 8)

with certain restrictions placed on the sparsity pattern of my. In other words,
each column of M can be computed independently. For the moment, we assume
that the sparsity pattern of my is given, i.e., a few, say no, entries of my at
certain locations are allowed to be nonzero, the rest of the entries are forced
to be zero. Denote the ny nonzero entries of my by My and the no columns of
A corresponding to my by Ag. Since A is sparse, the submatrix Ay has many
rows that are identically zero. After removing the zero rows, we have a reduced
matrix Aj, with n; rows. The individual minimization problem (8) is reduced to
a least squares problem of order nq, X ns

H.lin”fikmk “ék“% k= 1L,2,...,n. (9)
Mg

We note that the matrix Ay is usually a very small rectangular matrix. It has
full rank if A is nonsingular.

There are a variety of methods available to solve the least squares problem
(9). One approach, proposed by Grote and Huckle [8], is to solve (9) using a QR

factorization as
< R
A= (), (10)

where Ry is a nonsingular upper triangular mg X mg matrix. Qp is an n; X
ny orthogonal matrix, such that Q;l = QI. The least squares problem (9)
is solved by first computing ¢ = QL& and then obtaining the solution as
My = R;l e, (1 : no). In this way, my can be computed for each k= 1,2,...,n,
independently. This yields an approximate inverse matrix M, which minimizes
|AM — I||p for the given sparsity pattern.

The inherent parallelism is obvious in the process of computing my, indepen-
dently of each other. Its performance depends on the choose of the sparsity
pattern. The static and dynamic sparsity pattern algorithms have been pro-
posed [4, 5, 8, 13]. Generally people think the dynamic sparsity pattern method
is more robust but with more computational costs than the static sparsity pat-
tern method. The comparative study between two algorithms can be found in
[19]. The dynamic sparsity pattern method can not be applied for our study
of the prediction of SAI preconditioner because the SAI preconditioner is mod-
ified in the process of solver iteration. In our study, the parameters should be
assigned a priori.
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The static sparsity pattern strategies use a priori patterns, e.g., the banded
pattern [2, 9]. A particularly useful and effective strategy is to use the sparsity
pattern of the matrix A or A7. Chow [3] proposed to use sparsified patterns
of A as the sparsity pattern for M. Here “sparsified” means that certain small
entries of A are removed before its sparsity pattern is extracted. The following
SAI algorithm with the static sparsity pattern is revised from the one in [3].

ALGORITHM 2.1. Construct a static pattern sparse approximate inverse precon-
ditioner.

1. Given a drop tolerance T and €

2. Sparsify A with respect to T

3. Compute a sparse approximate inverse M according to
the sparsity pattern of A

Drop small entries of M with respect to ¢

5. M is the preconditioner for Az = b

#a

3. SAI Parameter Space

We use the preconditioned GMRES (PGMRES) as our choice of precondi-
tioned Krylov subspace method, i.e., we use the iterative solver GMRES with the
SAI preconditioner. PGMRES with SAI preconditioner can solve some sparse
linear systems that would fail with other preconditioners like ILUT. According
to Algorithm 2.1, there are two parameters are involved in computing our SAI
preconditioner. The first one is the dropping tolerance 7 by which the relatively
small entries of matrix A in Equation (6) with respect to the corresponding diag-
onal entries are dropped to get a new matrix A’. The second one ¢ is for dropping
the relatively small entries of M with respect to the corresponding diagonal en-
tries after computing M =~ A’~!. There exist numerous SAI algorithms. We
may adopt different parameter sets which depend on the SAI algorithms.

T4 74006 0 00 o

—
€

FIGURE 1. Parameter Space of SAL
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Whether a sparse linear system can be solved by SAI and the number of
iterations the PGMRES will take are closely related to the values of these two
parameters. Given a sparse linear system, we want to predict all the possible
combination of the parameters with which the linear system can be solved. The
possible combination of the parameters may construct arbitrary areas in a two-
dimensional parameter space. As the case of ILUT [27], we choose some points
in the parameter space as samples (refer to Figure 1). Studying the performance
of SAI with these sample parameters, we can get the main idea of what kinds
of combination of the parameters are favorable for a given sparse system. If we
can correctly predict the solving status of a sparse linear system at the sample
points, we may obtain an outline of the parameter area(s) in which the sparse
linear system can be solved.

We use support vector machine (SVM) classification to predict the solving
status of the sparse linear systems by SAI with a specific set of parameters. The
explanation how the SVM can be applied for the prediction is found in [24, 27].

4. Experiment and Result

We conduct some experiments to test the prediction accuracy of the solving
status of the 316 sparse linear systems by PGMRES with preconditioner SAI
with different parameter sets. The sparse linear systems are constructed by using
sparse matrices from MatrixMarket {15]. The parameter setting in PGMRES is
the same as that used in [27]. To be specific, the right hand sides of the linear
systems are constructed by assuming that the solutions are a vector of all ones.
The initial guessed solutions are a vector of all zeros. The maximum number
of iterations is 500. The convergence stopping criterion is that the 2-norm of
the residual vectors is reduced by 7 orders of magnitude. The iterative method
used is GMRES(20) and the preconditioner is SAI. We test the accuracy of pre-
dicting the combination of parameters using SVM classification [18, 17]. We
use SVME9ht [10] for SVM classification software. The kernel we used in SVM
classification is RBF[10]. The results are obtained by using a 5-fold cross vali-
dation. Detailed description about the SVM classification and its applications
to the matrix preconditioner prediction can be found in [20, 24, 27]. For the pa-
rameters 7 and e, we choose the most often used values 0.1, 0.01, 0.001, 0.0001,
0.00001.

Table 1 shows the average prediction accuracy with different combination
of the parameters when the o in RBF kernel is set to 0.1. We see that the
highest prediction accuracy 92.4% is obtained at four points around (7,¢) =
(0.00001, 0.00001). The lowest prediction accuracy 88.0% is obtained with (7, €) =
(0.01,0.01). Generally speaking, the prediction accuracy reaches the highest
value around the point (7, €) = (0.00001, 0.00001).

Table 2 also shows the average prediction accuracy with different combination
of parameters. The difference from Table 1 is that o is set to be 0.01 in RBF
kernel. It shows a different distribution of prediction accuracy to Table 1 and
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[ 7\¢ [ 01 ] 001 [ 0001 [ 0.0001 | 0.00001 |
0.10000 [ 0.892405 | 0.895570 | 0.911392 | 0.905063 | 0.895570
0.01000 [{ 0.889241 | 0.879747 | 0.895570 | 0.892405 | 0.901899
0.00100 || 0.886076 | 0.901899 | 0.898734 | 0.914557 | 0.914557
0.00010 || 0.892405 | 0.908228 | 0.895570 | 0.924051 | 0.924051
0.00001 [[ 0.892405 | 0.917722 | 0.892405 | 0.924051 | 0.924051

TABLE 1. Prediction accuracy of SVM classification (o = 0.1).

| \e [ 01 ] 0.01 ] 0.001 ] 0.0001 | 0.00001 |
0.10000 || 0.892405 | 0.892405 | 0.898734 | 0.901899 | 0.905063
0.01000 || 0.905063 | 0.901899 | 0.914557 | 0.920886 | 0.920886
0.00100 || 0.901899 | 0.911392 | 0.917722 | 0.911392 | 0.911392
0.00010 || 0.889241 | 0.917722 | 0.908228 | 0.917722 | 0.917722
0.00001 || 0.889241 | 0.917722 | 0.895570 | 0.917722 | 0.917722

TABLE 2. Prediction accuracy of SVM classification (o = 0.01).

L\ ]

0.1

0.01

0,001 |

0.0001

[ 0.00001 ]

0.10000

0.908228

0.911392

0.914557

0.930380

0.905063

0.01000

0.917722

0.908228

0.914557

0.920886

0.927215

0.00100

0.905063

0.914557

0.920886

0.927215

0.927215

0.00010

0.898734

0.911392

0.917722

0.930380

0.930380

0.00001

0.898734

0.908228

0.889241

0.930380

0.930380

TABLE 3. Prediction accuracy of SVM classification (¢ = 0.001).

the highest prediction accuracy is achieved around point (7, €) = (0.01,0.00001)
with prediction accuracy 92.1%.

Table 3 is obtained by setting o to be 0.001 in RBF kernel. This table
shows similar prediction accuracy pattern to Table 1 but this time the highest
prediction accuracy is achieved at (r,€) = (0.01,0.0001), too. The prediction
accuracy 93.0% with o = 0.001 is the greatest one among the whole data.

Table 4 is obtained by setting o to be 0.0001 in RBF kernel. This table shows
similar pattern of prediction accuracies as the previous tables but, we observe,
the prediction accuracies are remarkably deteriorated.

Table 5 describes the total prediction accuracy of SVM classification with dif-
ferent o values. The total prediction accuracy is the average of all the prediction
accuracies at the points (7, ¢). The table shows that the total prediction accu-
racy gradually increases as o decreases, until o = 0.001. Roughly speaking, we
have the best prediction accuracy when 7 = 0.00001, ¢ = 0.00001 and o = 0.001.
Most of the total average prediction accuracies are over 90.0%. It means that
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7\ [ 01 ] 001 [ 0.00L | 0.0001 [ 0.00001 |
0.10000 || 0.851266 | 0.844937 | 0.863924 | 0.860759 | 0.857595
0.01000 3| 0.873418 | 0.844937 | 0.857595 | 0.867089 | 0.882911
0.00100 || 0.867089 | 0.873418 | 0.876582 | 0.879747 | 0.879747
0.00010 || 0.854430 | 0.876582 | 0.873418 | 0.892405 | 0.892405
0.00001 || 0.854430 | 0.879747 | 0.867089 | 0.892405 | 0.892405
TABLE 4. Prediction accuracy of SVM classification (¢ = 0.0001).

o 0.1 0.01 0.001 0.0001
Total Accuracy || 0.902785 | 0.907848 | 0.915949 | 0.870253
TABLE 5. Total prediction accuracy of SVM classification with
different o.

SVM classification works well for solving status prediction. For & > 0.001, the
total average prediction accuracies of SAI preconditioner are slightly better than
those of ILUT preconditioner {27]. It might be because the distribution of solv-
ing results of iterative solver with SAI preconditioner looks simpler than that of
ILUT preconditioners.

5. Conclusion

There may be various parameter spaces which depend on the SAI algorithms.
We choose two tolerance parameters of SAI and predict the solving status of
a sparse linear system using PGMRES with SAIL It is difficult to predict all
the possible areas in the parameter space that a given sparse linear system can
be solved. We choose some sample points in the parameter space to predict
the solving status of sparse linear systems at such sample points. Then we can
have an idea of the outline of the area in the parameter space that the sparse
linear system can be solved. We also analyzed in detail the area patterns in
parameter space that can obtain high prediction accuracy in each prediction
method. Generally speaking, we can get better prediction accuracy as the tol-
erance parameters 7, € are smaller. It means that better prediction is achieved
if we reduce the number of dropped entries for the original matrix and the pre-
conditioner during computing the preconditioner. Our result can be added up
to build a data mining techniques based intelligent preconditioner recommen-
dation system for application scientists and engineers [20]. According to our
experiment, the SAI preconditioner often succeeds to be computed even when
the ILUT preconditioner for a sparse linear system fails, and vice versa. So
ILUT and SAI preconditioners can complement each other.
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