• Title/Summary/Keyword: Matrix rectifier

Search Result 17, Processing Time 0.022 seconds

Global Sliding Mode Control based on a Hyperbolic Tangent Function for Matrix Rectifier

  • Hu, Zhanhu;Hu, Wang;Wang, Zhiping;Mao, Yunshou;Hei, Chenyang
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.991-1003
    • /
    • 2017
  • The conventional sliding mode control (CSMC) has a number of problems. It may cause dc output voltage ripple and it cannot guarantee the robustness of the whole system for a matrix rectifier (MR). Furthermore, the existence of a filter can decrease the input power factor (IPF). Therefore, a novel global sliding mode control (GSMC) based on a hyperbolic tangent function with IPF compensation for MRs is proposed in this paper. Firstly, due to the reachability and existence of the sliding mode, the condition of the matrix rectifier's robustness and chattering elimination is derived. Secondly, a global switching function is designed and the determination of the transient operation status is given. Then a SMC compensation strategy based on a DQ transformation model is applied to compensate the decreasing IPF. Finally, simulations and experiments are carried out to verify the correctness and effectiveness of the control algorithm. The obtained results show that compared with CSMC, applying the proposed GSMC based on a hyperbolic tangent function for matrix rectifiers can achieve a ripple-free output voltage with a unity IPF. In addition, the rectifier has an excellent robust performance at all times.

Fault-Tolerant Strategy to Control a Reverse Matrix Converter for Open-Switch Faults in the Rectifier Stage

  • Lee, Eunsil;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2016
  • Reverse matrix converters, which can step up voltages, are suitable for applications with source voltages that are lower than load voltages, such as generator systems. Reverse matrix converter topologies are advantageous because they do not require additional components to conventional matrix converters. In this paper, a detection method and a post-fault modulation strategy to operate a converter as close as possible to its desired normal operation under the open-switch fault condition in the rectifier stage are proposed. An open-switch fault in the rectifier stage of a reverse matrix converter causes current distortions and voltage ripples in the system. Therefore, fault-tolerant control for open-switch faults is required to improve the reliability of a system. The proposed strategy determines the appropriate switching stages from among the remaining healthy switches of the converter. This is done based on reference currents or voltages. The performance of the proposed strategy is experimentally verified.

Reducing Switching Losses in Indirect Matrix Converter Drives: Discontinuous PWM Method

  • Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1325-1335
    • /
    • 2018
  • This paper presents a discontinuous pulse width modulation (DPWM) method to reduce switching losses in an indirect matrix converter (IMC) drive. The IMC has a number of power semiconductor switches. In other words, it consists of a rectifier stage and an inverter stage for AC/AC power conversion, which are composed of 12 and 6 switching devices, respectively. Therefore, the switching devices of the IMC suffer from high switching losses in the IMC drives. Various topologies to reduce switching losses have been studied by eliminating a number of switches from the rectifier stage. In this study, in contrast to prior research, a DPWM method is presented to reduce the switching losses of the inverter stage. The effectiveness of the proposed method to reduce switching losses in IMC drives is verified by simulations and experimental results.

Implementation of an Efficient Algorithm for a Single Phase Matrix Converter

  • Gola, Ajay Kumar;Agarwal, Vineeta
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.198-206
    • /
    • 2009
  • An algorithm is developed that enables a single-phase matrix converter (SPMC) to perform functions of a generalized single phase power electronics converter such as acting as a frequency changer, rectifier, inverter, and chopper. This reduces the need for new converter hardware. The algorithm is implemented first on computer simulation software Orcad Capture CIS version 9.1. Simulation results are presented for five types of converters with a control input variable that decides the 1) type of converter and 2) type of output waveform. The simulated results verify the working and operation of a generalized converter based on SPMC. Simulated results are verified with experimental results. Hardware design is obtained using readily available ICs and other components. The trigger circuit has been tested qualitatively by observing waveforms on CRO. The operation of the proposed system has been found to be satisfactory.

A Carrier-Based Pulse Width Modulation Method for Indirect Matrix Converters

  • Nguyen, Dinh-Tuyen;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.448-457
    • /
    • 2012
  • This paper proposes a carrier-based pulse width modulation (PWM) method to control an indirect matrix converter (IMC) by analyzing the relationship between the space vector PWM (SVPWM) and the carrier-based PWM. The complexity of the SVPWM method for an IMC can be reduced by using an equivalent carrier-based PWM method. The advantage of the proposed algorithm is its ability use only one symmetrical triangular carrier signal to generate the gate signals for all of the power switches in both the rectifier and inverter stages as compared to the conventional method where the carrier signal used in the rectifier stage is different from that of the inverter stage. In addition, by using a suitable offset voltage component in the modulation signals, the output voltage magnitude reaches 0.866 of the input voltage magnitude. Simulation and experimental results are provided in order to validate the proposed method.

A Sliding Mode Control Design based on the Reaching Law for Matrix Rectifiers

  • Wang, Zhiping;Mao, Yunshou;Hu, Zhanhu;Xie, Yunxiang
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1122-1130
    • /
    • 2016
  • This paper presents a novel approach for achieving both a tight DC voltage regulation and a power factor control by applying the Reaching Law Sliding Mode Control (RL-SMC) and the conventional Sliding Mode Control (SMC). Applying these strategies on a matrix rectifier (MR) can achieve a unity grid side power factor when the DC load changes widely and it can provide a ripple-free output voltage that is easily affected by distortions of the three-phase ac voltage supply. Furthermore, by employing the reaching law on the SMC can solve the chatting problem of the sliding motion. Comparative Matlab simulations and experimental verifications for these strategies have been presented and discussed in this paper. The results show that by applying the SMC and RL-SMC on a MR can achieve a unity grid side power factor and a regulated ripple-free DC output.

SVPWM Strategies for Three-level T-type Neutral-point-clamped Indirect Matrix Converter

  • Tuyen, Nguyen Dinh;Phuong, Le Minh;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.944-955
    • /
    • 2019
  • In this paper, the three-level T-type neutral-point-clamped indirect matrix converter topology and the relative space vector modulation methods are introduced to improve the voltage transfer ratio and output voltage performance. The presented converter topology is based on combinations of cascaded-rectifier and three-level T-type neutral-point-clamp inverter. It can overcome the limitation of voltage transfer ratio of the conventional matrix converter and the high voltage rating of power switches of conventional matrix converter. Two SVPWM strategies for proposed converter are described in this paper to achieve the advantages features such as: sinusoidal input/output currents and three-level output voltage waveforms. Results from Psim 9.0 software simulation are provided to confirm the theoretical analysis. Hence, a laboratory prototype was implemented, and the experimental results are shown to validate the simulation results and to verify the effectiveness of the proposed topology and modulation strategies.

Implementation of Vector control for induction motor using the AC-AC matrix converter (교류-교류 행렬변환기를 이용한 유도전동기의 벡터제어 구현)

  • Kim, Woo-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.3-10
    • /
    • 2003
  • Application of matrix converter to vector control of induction motor using simplified Venturini algorithm which is capable of achieving the maximum output voltage is developed. This algorithm simplifies the control algorithm and therefor reduces the digital implementation time. Matrix converter is used as voltage-referenced voltage fed vector controlled induction motor drive. This paper describes the performance of vector controlled induction motor with four quadrant capability employing a matrix converter power circuit. The advantage of this system over the conventional rectifier-inverter arrangement are capability for regeneration into the utility, sinusoidal supply currents and minimum passive components. The steady-state and transient performance of the induction motor drive under the vector control technique is demonstrate with simulation and experiment results.

  • PDF

A Fault Tolerant Strategy Based on Model Predictive Control for Full Bidirectional Switches Indirect Matrix Converter

  • Le, Van-Tien;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.74-76
    • /
    • 2019
  • This paper proposes an open-switch fault tolerant strategy based on the model predictive control for a full bidirectional switches indirect matrix converter (FBS-IMC). Compared to the conventional Indirect Matrix Converter (IMC), the FBS-IMC can provide healthy current path when open-switch fault is occurred. To keep the continuous operation, the fault tolerant strategy is developed by means of reversing the DC-link voltage polarity regardless of the faulty switch location in the rectifier or inverter stage. Therefore, the proposed control strategy can maintain the same input and output performances during the faulty condition as the normal condition. The simulation results are given to verify the effectiveness of the proposed strategy.

  • PDF

Design of HVDC System 550 Damping Controller Using Novel Eigenvalue Analysis Program (신고유치 해석 프로그램을 이용한 직류계통 축비틀림 진동 댐핑 제어기 설계)

  • 김동준;남해곤;문영환;김용구
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.140-151
    • /
    • 2004
  • This paper presents the HVDC system modelling for analysis of subsynchronous oscillation and the design of the subsynchronous oscillation damping controller in HVDC system with the aid of novel eigenvalue analysis program. The HVDC system models include both the steady-state model for power flow calculation and the dynamic model for constructing the state matrix. The design procedures of the subsynchronous oscillation damping controller (SODC), which is integrated with PI controller at rectifier, consist of three steps:1) to identify the dominant torsional oscillation mode in the AC/DC system;2) to determine the parameters of the SODC for compensating the phase lagging due to the rectifier controller;3) to validate the control parameters and to determine the appropriate gain using a time-domain simulation program. The proposed design method has been tested against two AC/DC systems for validation.