Browse > Article
http://dx.doi.org/10.6113/JPE.2019.19.4.944

SVPWM Strategies for Three-level T-type Neutral-point-clamped Indirect Matrix Converter  

Tuyen, Nguyen Dinh (Dept. of Electrical and Electronics Engineering, Hochiminh City University of Technology, VNU-HCM)
Phuong, Le Minh (Dept. of Electrical and Electronics Engineering, Hochiminh City University of Technology, VNU-HCM)
Lee, Hong-Hee (School of Electrical Engineering, University of Ulsan)
Publication Information
Journal of Power Electronics / v.19, no.4, 2019 , pp. 944-955 More about this Journal
Abstract
In this paper, the three-level T-type neutral-point-clamped indirect matrix converter topology and the relative space vector modulation methods are introduced to improve the voltage transfer ratio and output voltage performance. The presented converter topology is based on combinations of cascaded-rectifier and three-level T-type neutral-point-clamp inverter. It can overcome the limitation of voltage transfer ratio of the conventional matrix converter and the high voltage rating of power switches of conventional matrix converter. Two SVPWM strategies for proposed converter are described in this paper to achieve the advantages features such as: sinusoidal input/output currents and three-level output voltage waveforms. Results from Psim 9.0 software simulation are provided to confirm the theoretical analysis. Hence, a laboratory prototype was implemented, and the experimental results are shown to validate the simulation results and to verify the effectiveness of the proposed topology and modulation strategies.
Keywords
Indirect matrix converter; Matrix converter; Multilevel inverter; Space vector modulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Schweizer and J. W. Kolar, “Design and implementation of a highly efficient three-level T-type converter for lowvoltage applications,” IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 899-907, Feb. 2013.   DOI
2 S. Bhattacharya, D. Mascarella, G. Joos, J. M. Cyr, and J. Xu, “A dual three-level T-NPC inverter for high-power traction applications,” IEEE J. Emerg. Sel. Topics Power Electron., Vol. 4, No. 2, pp. 668-678, Jun. 2016.   DOI
3 Y. Wang, W. W. Shi, N. Xie, and C. M. Wang, “Diode-free t-type three-level neutral-point-clamped inverter for low-voltage renewable energy system,” IEEE Trans. Ind. Electron., Vol. 61, No. 11, pp. 6168-6174, Nov. 2014.   DOI
4 P. Correa, J. Rodriguez, M. Rivera, J. R. Espinoza, and J. W. Kolar, “Predictive control of an indirect matrix converter,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1847-1853, June 2009.   DOI
5 T. D. Nguyen and H. H. Lee, “Modulation strategies to reduce common-mode voltage for indirect matrix converters,” IEEE Trans. Ind. Electron., Vol. 59, No. 1, pp. 129-140, Jan. 2012.   DOI
6 J. W. Kolar, T. Friedli, J. Rodriguez, and P. W. Wheeler, “Review of three-phase PWM AC-AC converter topologies,” IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 4988-5006, Nov. 2011.   DOI
7 J. W. Kolar, F. Schafmeister, S. D. Round, and H. Ertl, “Novel three-phase AC-AC sparse matrix converters,” IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 1649-1661, Sep. 2007.   DOI
8 Q. H. Tran and H. H. Lee, “An advanced modulation strategy for three-to-five-phase indirect matrix converters to reduce common-mode voltage with enhanced output performance,” IEEE Trans. Ind. Electron., Vol. 65, No. 7, pp. 5282-5291, Jul. 2018.   DOI
9 T. D. Nguyen and H. H. Lee, “Development of a three-tofive-phase indirect matrix converter with carrier-based PWM based on space-vector modulation analysis,” IEEE Trans. Ind. Electron., Vol. 63, No. 1, pp. 13-24, Jan. 2016.   DOI
10 M. Chai, D. Xiao, R. Dutta, and J. E. Fletcher, “Space vector PWM techniques for three-to-five-phase indirect matrix converter in the overmodulation region,” IEEE Trans. Ind. Electron., Vol. 63, No. 1, pp. 550-561, Jan. 2016.   DOI
11 T. D. Nguyen and H. H. Lee, “Dual three-phase indirect matrix converter with carrier-based PWM method,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 569-581, Feb. 2014.   DOI
12 X. Liu, P. Wang, P. C. Loh, and F. Blaabjerg, “A compact three-phase single-input/dual-output matrix converter,” IEEE Trans. Ind. Electron., Vol. 59, No. 1, pp. 6-16, Jan. 2012.   DOI
13 J. Riedemann, J. C. Clare, P. W. Wheeler, R. Blasco-Gimenez, M. Rivera, and R. Pena, “Open-end winding induction machine fed by a dual-output indirect matrix converter,” IEEE Trans. Ind. Electron., Vol. 63, No. 7, pp. 4118-4128, Jul. 2016.   DOI
14 Q. H. Tran and H. H. Lee, “A three-vector modulation strategy for indirect matrix converter fed open-end load to reduce common-mode voltage with improved output performance,” IEEE Trans. Power Electron., Vol. 32, No. 10, pp. 7904-7915, Oct. 2017.   DOI
15 C. F. Garcia, M. E. Rivera, J. R. Rodriguez, P. W. Wheeler, and R. S. Pena, “Predictive current control with instantaneous reactive power minimization for a four-leg indirect matrix converter,” IEEE Trans. Ind. Electron., Vol. 64, No. 2, pp. 922-929, Feb. 2017.   DOI
16 Y. Sun, M. Su, X. Li, H. Wang, and W. Gui, “Indirect four-leg matrix converter based on robust adaptive backstepping control,” IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 4288-4298, Sep. 2011.   DOI
17 A. M. Bozorgi, A. Hakemi, M. Farasat, and M. Monfared, “Modulation techniques for common-mode voltage reduction in the Z-source ultra-sparse matrix converters,” IEEE Trans. Power Electron., Vol. 34, No. 1, pp. 958-970, Jan. 2019.   DOI
18 A Hakemi and M. Monfared, “Very high gain three-phase indirect matrix converter with two Z-source networks in its structure,” IET Renew. Power Gener., Vol. 11, No. 5, pp. 633-641, 2017.   DOI
19 D. Sri Vidhya and T. Venkatesan, “Quasi-Z-source indirect matrix converter fed induction motor drive for flow control of dye in paper mill,” IEEE Trans. Power Electron., Vol. 33, No. 2, pp. 1476-1486, Feb. 2018.   DOI
20 S. Liu, B. Ge, Y. Liu, H. Abu-Rub, R. S. Balog, and H. Sun, "Modeling, analysis, and parameters design of LC-filterintegrated quasi-Z -source indirect matrix converter," IEEE Trans. Power Electron., Vol. 31, no. 11, pp. 7544-7555, Nov. 2016.   DOI
21 L. Qiu, L. Xu, K. Wang, Z. Zheng, and Y. Li, “Research on output voltage modulation of a five-level matrix converter,” IEEE Trans. Power Electron., Vol. 32, No. 4, pp. 2568-2583, Apr. 2017.   DOI
22 X. Lie, J. C. Clare, P. W. Wheeler, L. Empringham, and L. Yongdong, “Capacitor clamped multilevel matrix converter space vector modulation,” IEEE Trans. Ind. Electron., Vol. 59, No. 1, pp. 105-115, Jan. 2012.   DOI
23 M. Diaz, R. Cardenas, M. Espinoza, C. M. Hackl, F. Rojas, J. C. Clare, and P. Wheeler, “vector control of a modular multilevel matrix converter operating over the full outputfrequency range,” IEEE Trans. Ind. Electron., Vol. 66, No. 7, pp. 5102-5114, Jul. 2019.   DOI
24 M. Y. Lee, P. Wheeler, and C. Klumpner, “Space-vector modulated multilevel matrix converter,” IEEE Trans. Ind. Electron., Vol. 57, No. 10, pp. 3385-3394, Oct. 2010.   DOI
25 Y. Sun, W. Xiong, M. Su, X. Li, H. Dan, and J. Yang, “Topology and modulation for a new multilevel diodeclamped matrix converter,” IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6352-6360, Dec. 2014.   DOI
26 P. C. Loh, F. Blaabjerg, F. Gao, A. Baby, and D. A. C. Tan, “Pulsewidth modulation of neutral-point-clamped indirect matrix converter,” IEEE Trans. Ind. Appl., Vol. 44, No. 6, pp. 1805-1814, Nov./Dec. 2008.   DOI
27 H. Wang, M. Su, Y. Sun, G. Zhang, J. Yang, W. Gui, J. Feng, “Topology and modulation scheme of a three-level third-harmonic injection indirect matrix converter,” IEEE Trans. Ind. Electron., Vol. 64, No. 10, pp. 7612-7622, Oct. 2017.   DOI
28 L. Wang, H. Wang, M. Su, Y. Sun, J. Yang, M. Dong, X. Li, W. Gui, and J. Feng, “A three-level t-type indirect matrix converter based on the third-harmonic injection technique,” IEEE J. Emerg. Sel. Topics Power Electron., Vol. 5, No. 2, pp. 841-853, Jun. 2017.   DOI
29 J. Rodriguez, J.-S. Lai, and F. Z. Peng, “Multilevel inverters: A survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 724-738, Aug. 2002.   DOI
30 L. M. Tolbert, F. Z. Peng, and T. G. Habetler, “Multilevel converters for large electric drives,” IEEE Trans. Ind. Appl., Vol. 35, No. 1, pp. 36-44, Jan./Feb. 1999.   DOI
31 J. Rodriguez, S. Bernet, B. Wu, J. O. Pontt, and S. Kouro, “Multilevel voltage-source-converter topologies for industrial medium-voltage drives,” IEEE Trans. Ind. Electron., Vol. 54, No. 6, pp. 2930-2945, Dec. 2007.   DOI
32 S. A. Amamra, K. Meghriche, A. Cherifi, and B. Francois, “Multilevel inverter topology for renewable energy grid integration,” IEEE Trans. Ind. Electron., Vol. 64, No. 11, pp. 8855-8866, Nov. 2017.   DOI
33 M. Schaefer, W. Goetze, M. Hofmann, F. Bayer, D. Montesinos-Miracle, and A. Ackva, “Direct current control for grid-connected diode-clamped inverters,” IEEE Trans. Ind. Electron., Vol. 64, No. 4, pp. 3067-3074, Apr. 2017.   DOI
34 M. Habibullah, D. D. C. Lu, D. Xiao, and M. F. Rahman, “Finite-state predictive torque control of induction motor supplied from a three-level NPC voltage source inverter,” IEEE Trans. Power Electron., Vol. 32, No. 1, pp. 479-489, Jan. 2017.   DOI
35 Z. Ye, Y. Xu, X. Wu, G. Tan, X. Deng, and Z. Wang, “A simplified PWM strategy for a neutral-point-clamped (NPC) three-level converter with unbalanced DC links,” IEEE Trans. Power Electron., Vol. 31, No. 4, pp. 3227-3238, Apr. 2016.   DOI
36 A. Lewicki, Z. Krzeminski, and H. Abu-Rub, “Space-vector pulsewidth modulation for three-level NPC converter with the neutral point voltage control,” IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 5076-5086, Nov. 2011.   DOI
37 P. Liu, S. Duan, C. Yao, and C. Chen, “A double modulation wave CBPWM strategy providing neutral-point voltage oscillation elimination and CMV reduction for three-level NPC inverters,” IEEE Trans. Ind. Electron., Vol. 65, No. 1, pp. 16-26, Jan. 2018.   DOI