KSII Transactions on Internet and Information Systems (TIIS)
/
제13권11호
/
pp.5616-5630
/
2019
Fully homomorphic encryption allows a third-party to perform arbitrary computation over encrypted data and is especially suitable for secure outsourced computation. This paper investigates secure outsourced computation of multiple matrix multiplication based on fully homomorphic encryption. Our work significantly improves the latest Mishra et al.'s work. We improve Mishra et al.'s matrix encoding method by introducing a column-order matrix encoding method which requires smaller parameter. This enables us to develop a binary multiplication method for multiple matrix multiplication, which multiplies pairwise two adjacent matrices in the tree structure instead of Mishra et al.'s sequential matrix multiplication from left to right. The binary multiplication method results in a logarithmic-depth circuit, thus is much more efficient than the sequential matrix multiplication method with linear-depth circuit. Experimental results show that for the product of ten 32×32 (64×64) square matrices our method takes only several thousand seconds while Mishra et al.'s method will take about tens of thousands of years which is astonishingly impractical. In addition, we further generalize our result from square matrix to non-square matrix. Experimental results show that the binary multiplication method and the classical dynamic programming method have a similar performance for ten non-square matrices multiplication.
행렬 곱셈은 과학 및 공학 분야에서 널리 사용되는 기본 연산이다. 딥러닝의 학습 알고리즘에도 행렬 곱셈이 많이 사용된다. 따라서 행렬 곱셈을 효과적으로 수행하기 위한 다양한 알고리즘들 개발하고 있다. 이중 행렬 곱셈의 연산량을 줄이는 방법으로 근사 행렬 곱셈 방법이 있다. 근사 행렬 곱셈은 행렬의 열과 행을 선택하기 위한 적절한 확률 분포를 결정하고, 이 분포에 따라 행렬의 열과 행을 선택하여 근사 행렬 곱셈을 수행한다. 기존의 방법들을 행렬 곱셈에 참여하는 두 개의 행렬 A, B를 모두 고려하여 확률 분포를 생성한다. 본 논문은 행렬 A만을 대상으로 근사 행렬 곱셈에 사용될 행렬의 열과 행을 선택하는 확률 분포를 생성하는 방법을 제안하였다. 기존의 방법들과 제안된 방법들을 사용하여 1000×1000, 2000×2000, 3000×3000, 4000×4000, 5000×5000 행렬에 대하여 근사 행렬 곱셈을 수행하였다. 기존의 방법보다 제안한 방법을 적용한 근사 행렬 곱셈이 평균 0.02%에서 2.34%까지 원래 행렬 곱셈 결과에 더 근접하는 결과를 보였다.
Matrix multiplication is a fundamental mathematical operation that has numerous applications across most scientific fields. In this paper, we presents a parallel GPU computation algorithm for dense matrix-matrix multiplication using OpenGL compute shader, which can play a very important role as a fundamental building block for many high-performance computing applications. Experimental results on NVIDIA Quad 4000 show that the proposed algorithm runs about 208 times faster than previous CPU algorithm and achieves performance of 75 GFLOPS in single precision for dense matrices with matrix size 4,096. Such performance proves that our algorithm is practical for real applications.
The $4{\times}4$ homogeneous transformation matrix is a compact representation of orientation and position of an object in robotics and computer graphics. A coordinate transformation is accomplished through the successive multiplications of homogeneous matrices, each of which represents the orientation and position of each corresponding link. Thus, for real time control applications in robotics or animation in computer graphics, the fast multiplication of homogeneous matrices is quite demanding. In this paper, a parallel-architecture vector processor is designed for this purpose. The processor has several key features. For the accuracy of computation for real application, the operands of the processors are floating point numbers based on the IEEE Standard 754. For the parallelism and reduction of hardware redundancy, the processor takes column vectors of homogeneous matrices as multiplication unit. To further improve the throughput, the processor structure and its control is based on a pipe-lined structure. Since the designed processor can be used as a special purpose coprocessor in robotics and computer graphics, additionally to special matrix/matrix or matrix/vector multiplication, several other useful instructions for various transformation algorithms are included for wide application of the new design. The suggested instruction set will serve as standard in future processor design for Robotics and Computer Graphics. The design is verified using FPGA implementation. Also a comparative performance improvement of the proposed design is studied compared to a uni-processor approach for possibilities of its real time application.
Matrix multiplication is an important problem in linear algebra. its main significance for combinatorial algorithms is its equivalence to a variety of other problems, such as transitive closure and reduction, solving linear systems, and matrix inversion. Thus the development of high-performance matrix multiplication implies faster algorithms for all of these problems. In this paper. we present a quantitative comparison of the theoretical and empirical performance of key matrix multiplication algorithms and use our analysis to develop a faster algorithm. We propose a Hybrid approach on Winograd's and Strassen's algorithms that improves the performance and discuss the performance of the hybrid Winograd-Strassen algorithm. Since Strassen's algorithm is based on a $2{\times}2$ matrix multiplication it makes the implementation very slow for larger matrix because of its recursive nature. Though we cannot get the theoretical threshold value of Strassen's algorithm, so we determine the threshold to optimize the use of Strassen's algorithm in nodes through various experiments and provided a summary shown in a table and graphs.
행렬 곱셈은 과학 및 공학분야에 다양하게 응용되고 있다. 행렬 곱셈의 경우 지역성을 활용하면 수행 성능을 크게 개선할 수 있다. GPU가 장착된 PC에서 CPU의 컴퓨팅 능력과 GPU의 컴퓨팅 능력을 같이 활용하여 행렬 곱셈을 가속하는 방법을 제시하였다. 제안된 방법이 GPU만을 사용하는 것보다 약 15%~30%의 성능을 향상시켰다.
Matrix multiplication is a fundamental operation of linear algebra and arises in many areas of science and engineering. This paper introduces an efficient parallel matrix multiplication scheme on N ${\times}$ N mesh-connected SIMD array processor, called multiple hierarchical SIMD architecture (HMSA). The architectural characteristic of HMSA is the hierarchically structured control units which consist of a global control unit, N local control units configured diagonally, and $N^2$ processing elements (PEs) arranged in an N ${\times}$ N array. PEs are communicating through local buses connecting four adjacent neighbor PEs in mesh-torus networks and global buses running across the rows and columns called horizontal buses and vertical buses, respectively. This architecture enables HMSA to have the features of diagonally indexed concurrent broadcast and the accessibility to either rows (row control mode) or columns (column control mode) of 2D array PEs alternately. An algorithmic mapping method is used for performance evaluation by mapping matrix multiplication on the proposed architecture. The asymptotic time complexities of them are evaluated and the result shows that paralle matrix multiplication on HMSA can provide significant performance improvement.
불리언 행렬은 다양한 분야에 응용되어 유용하게 사용되고 있으며 불리언 행렬에 대한 많은 연구가 수행되었다 대부분의 연구에서는 불리언 행렬의 곱셈을 다루고 있으나 모두 두 불리언 행렬 사이의 곱셈에 관심을 두고 있으며 다수의 n$\times$m 불리언 행렬과 모든 m$\times$k불리언 행렬 사이의 곱셈은 극히 소수의 연구에서 보이고 있다. 본 논문은 기존에 제시된 두 불리언 행렬의 최적 곱셈 알고리즘이 모든 불리언행렬에 대한 곱셈을 해야 하는 경우 부적합함을 보이고 n$\times$m 불리언 행렬과 모든 m$\times$k 불리언 행렬의 곱셈을 효율적으로 계산할 수 있는 이론을 정립한 후 이를 적용한 불리언 행렬 곱셈의 실행결과에 대하여 논한다.
D-클래스는 주어진 동치관계(equivalence relation)에 있는 $n{\times}n$ 불리언 행렬의 집합으로 정의된다. D-클래스 계산은 $n{\times}n$ 불리언 행렬의 전체 집합을 대상으로 이 집합에서 조합할 수 있는 모든 세 불리언 행렬 사이의 곱셈을 요구한다. 그러나 불리언 행렬에 대한 대부분의 연구는 단지 두 개의 불리언 행렬에 대한 효율적인 곱셈에 집중되었으며 모든 불리언 행렬 사이의 곱셈에 대한 연구는 최근에야 소수가 보이고 있다. 본 논문은 모든 세 개의 불리언 행렬 곱셈과 모든 D-클래스를 보다 효율적으로 계산할 수 있는 이론을 제시하고 이를 적용한 알고리즘과 실행결과에 대하여 논한다.
The acceleration of neural networks has become an important topic in the field of computer vision. An accelerator is absolutely necessary for accelerating the lightweight model. Most accelerator-supported operators focused on direct convolution operations. If the accelerator does not provide GEMM operation, it is mostly replaced by CPU operation. In this paper, we proposed an optimization technique for 2-stage tiling-based GEMM routines on VTA. We improved performance of the matrix multiplication routine by maximizing the reusability of the input matrix and optimizing the operation pipelining. In addition, we applied the proposed technique to the DarkNet framework to check the performance improvement of the matrix multiplication routine. The proposed GEMM method showed a performance improvement of more than 2.4 times compared to the non-optimized GEMM method. The inference performance of our DarkNet framework has also improved by at least 2.3 times.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.