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Abstract 
 

Fully homomorphic encryption allows a third-party to perform arbitrary computation over 
encrypted data and is especially suitable for secure outsourced computation. This paper 
investigates secure outsourced computation of multiple matrix multiplication based on fully 
homomorphic encryption. Our work significantly improves the latest Mishra et al.’s work. We 
improve Mishra et al.’s matrix encoding method by introducing a column-order matrix 
encoding method which requires smaller parameter. This enables us to develop a binary 
multiplication method for multiple matrix multiplication, which multiplies pairwise two 
adjacent matrices in the tree structure instead of Mishra et al.’s sequential matrix 
multiplication from left to right. The binary multiplication method results in a 
logarithmic-depth circuit, thus is much more efficient than the sequential matrix multiplication 
method with linear-depth circuit.   Experimental results show that for the product of ten 32×32 
(64×64) square matrices our method takes only several thousand seconds while Mishra et al.’s 
method will take about tens of thousands of years which is astonishingly impractical. In 
addition, we further generalize our result from square matrix to non-square matrix. 
Experimental results show that the binary multiplication method and the classical dynamic 
programming method have a similar performance for ten non-square matrices multiplication.  
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1. Introduction 

Cloud computing service allows users to outsource data processing and storage tasks to 
cloud platform. However, storing data on cloud server somewhere could pose a severe threat 
to users’ privacy as cloud managers could be curious. The issues of privacy in cloud 
computing will probably lead to a number of privacy concerns and hinder the popularity of 
cloud computing. A promising solution to address these concerns is fully homomorphic 
encryption (FHE) which enables to perform arbitrary computations over encrypted data 
without decrypting it first.  

With fully homomorphic encryption a user can encrypt their private data locally and send 
the ciphertexts to cloud platform which performs the computations on encrypted data and 
sends back the result in the form of ciphertext to the user. Afterward, the user decrypts the 
result with high certainty that no one else knows their private data. Fully homomorphic 
encryption is a very powerful tool for outsourcing computations on confidential data and has 
become increasingly popular in cloud computing security. 

The first fully homomorphic encryption scheme was proposed by Gentry et al. [1] in 2009. 
Since then, fully homomorphic encryption has been rapidly developed and a number of 
improved schemes have been proposed [2-7]. On the other hand, fully homomorphic 
encryption has been used to build a variety of outsourced computation applications, e.g., 
secure data statistics and machine learning [8-11].  

Matrix multiplication is a fundamental and time consuming operation in many higher level 
computations applications.  An improvement in matrix multiplication will lead to a significant 
improvement in the performance of the higher level applications. Halevi et al. [12] proposed 
three different matrix encoding methods for matrix-vector multiplication based on single 
instruction multiple data (SIMD) technique [13], i.e., row-order, column-order, diagonal-order.  
Duong et al. [14] proposed a new matrix encoding method for secure matrix multiplication.  
Recently, Rathee et al. [15] proposed a new matrix encoding method based on hypercube 
structure and Jiang et al. [16] proposed a new matrix encoding method based on SIMD 
technique. 

All the methods above are only for secure multiplication for two matrices and there is little 
work investigating secure multiple (n>2) matrix multiplication. The only work we are aware 
of that investigated secure multiple matrix multiplication was proposed by Mishra et al. [17], 
which is an extension of Duong et al. ’s [14] two matrices multiplication method. Let 
A1 ,A2,…,An be square matrices with size of m×m. In order to support the multiple matrix 
multiplication, they define the different encoding methods for each matrix Ai {i=1,…,n} 
respectively and the next matrix requires larger parameter than the previous one. However, 
such a large parameter makes homomorphic multiplication more slow. Thus, their method will 
become impractical asymptotically as the number of matrices involved increases. 

In this paper, our main aim is to improve Mishra et al.'s [17] work for further efficiency. Our 
contributions are as follows. 

First, we extend Halevi et al.’s [12] column-order matrix encoding from matrix/vector 
multiplication into matrix-matrix multiplication. Compared to Mishra et al. ’s encoding 
method, the main advantage of the column-order encoding method is that homomorphic 
multiplication of two matrices will lead to the third one which is also in the form of 
column-order encoding. This way, all the n matrices will be encoded with the fixed-size 
parameter and thus our solution is much more efficient asymptotically. 
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Second, Mishra et al. make use of sequential multiplication to calculate the product of 
multiple matrices, which calculates the product of n matrices one by one from left to right. We 
introduce a new method called binary multiplication, which multiplies pairwise two adjacent 
matrices in the tree structure. Compared to Mishra et al.’ sequential multiplication, our 
approach has lower multiplicative circuit depth and thus will be much more efficient. Further, 
we optimize our method by multi-thread technique. Experimental results show that our 
method takes 2860.57 seconds for the product of ten 32×32 matrices and 10772.2 seconds for 
ten 64×64 matrices. Comparatively, Mishra et al.’s gave experimental results only for the 
product of three 32×32 matrices and 64×64 matrices respectively. According to their own 
estimate, Mishra et al.’s method will take about 21924468 years for ten 32×32 matrix and 
about 159923135 years for ten 64×64 matrices which is astonishingly impractical. Thus, our 
method is significantly faster than Mishra et al.’s method. 

Third, we further generalize our result from square matrix to non-square matrix 
multiplication. For multiple non-square matrix multiplication, we additionally introduce the 
classical dynamic programming technique to calculate the product of ten non-square matrices. 
Experimental results show that the binary multiplication method and the dynamic 
programming method have a similar performance for multiple non-square matrix 
multiplication. Specifically, they take 5995.16 seconds and 5046.81 seconds for the product of 
some set of ten non-square matrices respectively.  

2. Related Work 
Some related works [18-22] focus on verifiable secure outsourcing of two matrix computation. 
These solutions exploit specific properties of matrix multiplication and design special 
protocols for secure outsourced matrix multiplication. Hopefully, these custom solutions are 
more efficient than that based on fully homomorphic encryption. However, a disadvantage is 
that each protocol must be designed, and proved secure, which are error-prone. Moreover, 
none of the protocols above investigates secure outsourced computation of multiple matrix 
multiplication. 

Secure multiparty computation [23] is another general framework for secure outsourced 
computation. However, this paradigm requires either significantly high communication 
overhead between the client and the cloud server or assuming the existing of the two-server 
[24] which is vulnerable to the collusion attack.  

3. Preliminaries 

3.1 Fully Homomorphic Encryption 
Fully Homomorphic Encryption is an encryption method that allows anyone to compute an 
arbitrary function f on an encryption of  x, without knowledge of the private key. As a result, 
one obtains an encryption of f(x). 
Definition 1. The fully homomorphic encryption scheme consists of four procedures 
ε= (KeyGen,Encryt,Decrypt,Evaluate) : 
1. ( , ) (1 )pk sk KeyGen λ← : It takes a security parameter λ as an input and outputs a public 

key pk and a secret key sk.  
2. ( , )c Enc pk m← : It takes a public key and a plaintext, outputs a ciphertext c. 
3. ( , )m Dec sk c← : It takes a private key and a ciphertext, outputs a plaintext m. 
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4. 1( , , ,..., )←f nc Eval pk f c c : It takes the public key, a function : nf P P→ , and a set of n 
ciphertexts 1( )nc ,...,c which is the encryption 1( ,..., )nm m  and outputs a ciphertext 

fc which is the encryption of 1( )nf m ,...,m . 

3.2 BGV 
BGV scheme [4] and its variants [5-6] are defined over ring-LWE of the 
form [ ] / ( )mx XΑ = Ζ Φ where ( )m XΦ is the m'th cyclotomic polynomial. The ciphertext 
space is set to be : /q qΑ = Α Α  for an odd integer modulus q. A BGV-type scheme has a chain 
of moduli, q0 < q1 < … < qL-1, where freshly encrypted ciphertexts are defined over largest 
modulus AL-1. Ciphertexts defined over Aqi are called level-i ciphertexts. 

The plaintext space for BGV scheme is the ring /Α = Α Αp p , where p is a prime. A salient 
feature of BGV scheme and its variants is that it supports single instruction multiple data 
(SIMD) parallel operations [13]. Under modulo p, the cyclotomic polynomial ( )m xΦ  can be 

factorized into l  distinct irreducible polynomials such that
1

( ) ( )mod
l

m i
i

x F x p
=

F =∏ , each 

with degree ( ) /d m l= Φ . Each factor corresponds to a plaintext slot and the following 
isomorphism (equation 1) holds. 

1[ ] / ( ) ... [ ] / ( ) ...d dp p p l p p
Z x F x Z x F x F FΑ ≅ ⊗ ⊗ ≅ ⊗ ⊗                          (1) 

By the polynomial CRT, the polynomial pa∈Α  decomposes into l  slots 1( ) ( )d
l l

i i p
a F= ∈ . 

Thus, we can pack l messages into a single plaintext polynomial and perform l  additions or 
multiplications at the cost of just a single operation. Assume that 1(( ) )l

i ia CRT a ==  and 

1(( ) )l
i ib CRT b == , we have the following equation 2. 

-1
1

-1
1

( mod( , )) ( mod( , ))
( mod( , )) ( mod( , ))

l
m i i i i

l
m i i i i

CRT a b p a b p F
CRT a b p a b p F

=

=

 + F = +


⋅ F = ⋅
                                     (2) 

Also, it is possible to rotate or permute the underlying plaintext slots in a batched vector by 
applying automorphism mappings of the form : ( ) ( )ka X a Xk →  where * /∈ < >mk Z p . 

3.3 Dynamic Programming for Multiple Non-square Matrix Multiplication 
Assume that there are n non-square matrices A1, A2, …, An with size p0 × p1, p1 × p2, p2 × p3, …, 
pn-1 × pn and the goal is to calculate the product of n matrices. As matrix multiplication is 
associative, no matter how a product of A1×A2…×An is parenthesized, the result obtained will 
remain the same. However, the order in which the product is parenthesized has a signification 
impact on the computational overhead of a product of n matrices. Dynamic programming [25] 
is an optimization method for solving a complex problem by breaking it down into simpler 
subproblems and can be used to determine the optimal parenthesization of a product of n 
matrices.  

Let m(i, j) denote the minimum number of multiplications for computing Ai × Ai+1 … × Aj. 
A recursive formula is defined as follows (equation 3). 
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{ }i-1 k ji k j-1

0 if i = j
m(i, j)= min m(i,k)+ m(k +1, j)+ p p p if i < j

≤ ≤





                             (3) 

As there are many overlapping subprobelms within this recursive formula, a direct recursive 
algorithm will result in an exponential time complexity. Instead, one can solve this recursive 
formula efficiently in either of two ways.  

Top-down approach with memorization: Before trying to solve a sub-problem, we first 
check memory table to see if the solution has already been stored. If a solution has been stored, 
we just use it directly without computation, otherwise we solve the sub-problem and add its 
solution into the table. 

Bottom-up approach: We can reformulate the problem in a bottom-up fashion.  Solving 
the sub-problems first and use their solutions to build the solutions to bigger problems.  

4. Mishra et al.’s Secure Multiple Matrix Multiplication Method 

Let A be a m×m matrix. For each row 1( ,..., )i i imA a a=  of A, they define two polynomials in 
[ ] / ( +1)nR x x= Ζ  as follows (equation 4).  

2

(1) 1
,3

=1

(2) ( 1) 1
,3

=1

( )

( )
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u
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∑
                                                         (4) 

Let A,B,C be three matrices with size of m×m. Mishra et al. [17] define three types of 
polynomial in R  for three matrices A,B,C as follows (equation 5).  
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                                                          (5) 

Where 1( ,..., )T
j j mjB b b= and T

kC are the thj and the thk columns of B and C respectively, and 
T
j mj 1jB = (b ,...,b ) . Define three types of packed ciphertext for a matrix A to 

be ( ) ( )
,3(A) : ( (A), )i i

mct Enc pol pk=  for i=1,2,3. 
Theorem 1 [17,Theorem 3]: Assume 4n m≥ . Let (1) (2) (3)(A)* (B)* (C)ct ct ct ct= and 

let ( , ) tDec ct sk R∈  denote its decryption result. Then for each , {1,..., }∈i k m , the ( , )thi k  entry 
of the matrix A×B×C is the coefficient of 3( 1) ( 1)− + −i m k mx  in ( , )Dec ct sk . 

An advantage of their encoding method is that whole matrix is encoded into one ciphertext, 
thus the multiplication of two matrices requires only one homomorphic multiplication. 
However, the drawback of Mishra et al.’s scheme is that each matrix requires different 
encoding method and the next matrix requires a factor of m larger parameter to encode than the 
previous one. This method for three matrices is about 80 ∼ 100 times slower than two matrices 
case. They estimated [17] that as the number of matrices increase, the running time will be at 
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least about 80 times slower. Thus, their method will become impractical asymptotically as the 
number of matrix increases. 

5. Our Secure Multiple Matrix Multiplication Schemes 

5.1 A Naive Method  
A naive method for secure multiple matrix multiplication is to encrypt each entry in each 
matrix by one ciphertext as shown in Fig.1, then use traditional matrix multiplication in 
ciphertext domain as shown in Fig. 2 This simple solution is able to multiply multiple matrices 
with fixed-size parameter. 

1,1 1, 1,1 1,

,1 , ,1 ,

( ) . . . ( ) . . .
. . . . . .
. . . . . .
. . . . . .
( ) . . . ( ) . . .

m m

pk

m m m m m m

enc a enc a a a

enc a enc a a a

   
   
   
   ←
   
   
   
   

 

Fig. 1. Encrypt each entry in each matrix 

 
Fig. 2. Traditional matrix multiplication in ciphertext 

 
Obviously, the main drawback of this naive method is that it requires one ciphertext for each 

entry of a matrix.This results in m2 ciphertext for each matrix and O(m3) operations for two 
matrix multiplication, which require a lot of time and space depending on the size of the input 
matrix. 

5.2 Secure Column-order Matrix multiplication  
Halevi et al. [12] proposed three different matrix encoding methods for matrix-vector 
multiplication, i.e., row-order, column-order, diagonal-order. We adopt column-order method 
and generalize it to matrix-matrix multiplication.  Assume that A,B are two m×m matrices and 
C=A×B. We can write A,B in the form of column order by equation 6 

1 1A ( | ... | ),B ( | ... | )m m= =a a b b                                                   (6) 
where both { }i 1i 2i mi i 1i 2i mi= (a ,a ,...,a ), = (b ,b ,...,b ) i = 1,2,...,ma b are m dimensional column 
vectors. Now we rewrite C as equation 7 

1
1 1

C ( | ... | )
i m i m

i i im i
i i

b b
= =

= =

= ∑ ∑a a                                                          (7) 

Now we transform the column-order matrix multiplication method above into the ciphertext 
domain.  Assume that ct(A),ct(B) are ciphertexts of two matrices A,B, which are encrypted 
column-wise as equation 8 

1 1(A) ( | ... | ), (B) ( | ... | )m mct u u ct v v= =                                          (8) 
where ,i iu v is the encryption of i i,a b respectively by SIMD technique. In order to perform 
matrix multiplication homomorphically, we first apply replicate operation [12] to each column 
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of ct(B) obtaining the m2 ciphertexts 1 2, ,..., { 1,2,..., }i i imv v v i m=  such that { , 1,2,..., }ijv i j m= is 
the encryption of [ ] =i jij bb in all positions. Now we have equation 9. 

1
1 1

(C) (A) (B) ( | ... | )
i m i m

i i i mi
i i

ct ct ct u v u v
= =

= =

= × = ∑ ∑                                           (9) 

Our method for secure column-order matrix multiplication is defined in Algorithm 1. 
 

 
Algorithm 1: Secure-Matrix-Multiplication(ct(A),ct(B)) 

 
Input: ct(A),ct(B)         // The ciphertexts of matrices A,B 
Output: ct(AB)             //The ciphertext of matrix AB 
for j=1 to m 

for i=1 to m 
ct(temp)=ct(A)[i] ×replicate(ct(B)[j],i) 
ct(C)[j]= ct(C)[j]+ct(temp) 
end for 

end for  
ct(AB)←ct(C) 
return ct(AB) 

 
 
The following example shown in Fig. 3 demonstrates how the secure matrix multiplication 

is performed.  
 

 
Fig. 3. Secure column-order matrix multiplication 

 
Note that the main advantage of the column order encoding method is that the resulting 

ciphertext ct(C) is also in column order which enables to keep on multiplying ct(C)  with next 
encrypted matrix homomorphically in the same way as above. As all matrices can are encoded 
in column order, we can select a fixed-size parameter for all matrices.  Thus, our encoding 
method is much more efficient compared to Mishra et al.’s encoding method which requires a 
factor of 80 times larger paramerters as the number of matrix increases. 
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5.3 Binary Multiplication Method for Secure Multiple Matrix Multiplication 
With the column order encoding technique, a natural method to calculate the product of n 
matrices A1,A2,…,An is to multiply them sequentially as above. However, the sequential 
multiplication method creates a circuit with  multiplicative depth, 
where  denotes the circuit depth of two-matrix multiplication. We propose a better 
method called binary multiplication method multiplying two adjacent matrices pairwise in a 
tree structure shown in Fig. 4. The product of n matrices creates a circuit with 

multiplicative depth. Therefore, . The reduced circuit 
depth allows much slower noise growth and thus enable us to select smaller parameters in the 
underlying fully homomorphic encryption scheme resulting in a greater efficiency. Our 
technique for binary multiplication method for secure multiple matrix multiplication is defined 
in Algorithm 2. 
 

 
Fig. 4. Binary multiplication method for secure multiple matrix multiplication 

 
 

Algorithm 2: Binary-Multiplication (ct(A1), ct(A2),…, ct(An))  
 

Input: B=(ct(A1), ct(A2),…, ct(An))   //B stores a vector of encrypted matrices 
Output: ct(A1×A2…×An)                    //The final result of multiple matrix multiplication 
N=n 
for L=1 to   

m=N                                  //m is the number of matrices involved in level L 
N=(m+1)/2                        //N is the number of matrices involved in level L+1 
for i=1 to N 

if(m%2==1&&i==N)    //If m is odd, no multiplication is required for the last matrix 
  Bi=Bi*2 

else 
  Bi = Secure-Matrix-Multiplication(Bi*2-1,Bi*2)   

end for  
end for 
return B1                                                  //The final result is stored in first element B1 
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5.4 Secure Multiple Non-square Matrix Multiplication  
If input matrices are non-square, we could further apply the dynamic programming method to 
find the most efficient way to perform the product of multiple matrices. Assume that matrix Ai 

with size of pi-1×pi (i=1,2,…,n).  Given a sequence of (p0,p1,…,pn), the dynamic programming 
algorithm with bottom-up approach [25] as shown in Algorithm 3 outputs {si,j}1<=i<=n,1<=j<=n 
which stores optimal parenthesized location for a product of Ai×Ai+1…×Aj. 
 

 
Alogorithm 3: Matrix-Chain-Order (p0,p1,…,pn) [25] 

 
Input: p0,p1,…,pn   //pi-1,pi are the row and column dimensions of matrix Ai 
Output: {si,j}1<=i<=n, 1<=j<=n  //The optimal parenthesized location for Ai×Ai+1…×Aj 
For i=1 to n 
m[i,i] = 0                //Initialization 
for r=2 to n         //r is the length of subchain of matrix 

for i=1 to n-r+1          
j=i+r-1             
m[i,j]=MAXINT   //m stores the minimum value of multiplication for Ai×Ai+1…×Aj 
for k=i to j-1 

min = m[i, k] + m[k + 1, j] + pi-1×pk×pj 
if min<m[i,j] 

   { 
m[i,j]=min 
si,j =k     //The optimal parenthesized location for Ai×Ai+1…×Aj 
} 

end for 
end for 

end for 
 

 
Given {si,j}1<=i<=n, 1<=j<=n and a vector of encrypted matrices (ct(A1), ct(A2),…, ct(An), the  

Algorithm 4 outputs the final result ct(A1×A2…×An). 
 

 
Algorithm 4: Secure-Multiple-Matrix-Multiplication(s,i,j,B) 

 
Input: 
-{si,j}1<=i<=n, 1<=j<=n   //{si,j} stores the optimal parenthesized location for Ai×Ai+1…×Aj. 
-i=1   //i is the index of first matrix 
-j=n   //j is the index of last matrix  
-B=(ct(A1), ct(A2),…, ct(An))   //B stores the vector of encrypted matrices 
Output: ct(A1×A2…×An)         //The final result of multiple matrix multiplication 
if(i==j) 
   return Bi 
else 
{ 

T1=Secure-Multiple-Matrix-Multiplication (s, i, si,j, B) 
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T2=Secure-Multiple-Matrix-Multiplication (s, si,j+1, j, B) 
T = Secure-Matrix-Multiplication (T1, T2) 
return T 

} 
 

6. Implementation and comparison 
In this section, we implement our algorithms in Section 5 and compare them with Mishra et 
al.’s method. Our experiments run on an Intel® Xeon® Gold 6148 CPU with 2.40 GHz and 
503G RAM, using HElib library [26] in C++ programs for the implementation of BGV 
scheme and its variants. We basically need to select the following parameters. 
-L: the number of moduli for leveled ciphertext spaces 
-p: a prime plaintext modulus 
-k: the security level 
-slot: the number of slots 

Targeting k=80-bits of security and selecting an appropriate depth parameter L and plaintext 
modulus p=257, we get the results in Table 1 and Table 2, which show the performances for 
multiple 32×32 (slot>=32) and 64×64 (slot>=64) matrix multiplication.  

Mishra et al. [17] implemented their method for two and three 32×32 (64×64) matrices 
multiplication in Intel Core i7-4790 CPU with 3.60 GHz and 8.00GB RAM in C programs. As 
shown in Table 1 and Table 2, for the product of two or three 32×32 (64×64) matrices, Mishra 
et al.’s method  is more efficient than ours. However, when n>=4, our method significantly 
outperforms Mishra et al.’s method.  

They estimated [17] that as the number of matrices increase, the running time will be at least 
about 80 times slower. Thus, a simple calculation shows that for ten 32×32 (64×64) matrices 
multiplication, their method will take about 21924468 (159923135) years which is an 
astronomical figure. In comparison, our method with multi-thread optimization takes only 
2860.57 (10772.2) seconds for ten 32×32 (64×64) matrices multiplication.  

In addition, our method also outperforms the naive method which takes 19003.3 seconds for 
ten 32×32 matrices multiplication as shown in Table 1. For ten 64×64 matrices multiplication, 
the program based on the naive method runs out of memory when n>=5 as shown in Table 2.  

 

Table 1. Secure multiple 32×32 matrix multiplication (k=80,p=257) 
Number of 
matrices 

2(s) 3(s) 4(s) 5 6 7 8 9 10 

Mishra et 
al.[17] 

0.297 32.969 2637.52* 58.611h 
* 

4688.92h
* 

42.82y 
* 

3425.698
y* 

274055.8
58y* 

2192446
8.63y* 

Naive 
Method 

L=3; 
418.398 

L=5; 
1926.43 

L=5; 
2021.51 

L=7; 
6298.53s 

L=7; 
6409.88s 

L=7; 
6410.65s 

L=7; 
7318.12s 

L=9; 
17848.2s 

L=9; 
19003.3s 

Sequential 
Multiplication 

L=3; 
58.449 

L=5; 
167.65 

L=9; 
1162.09 

L=11; 
2416.2s 

L=15; 
5593.28s 

L=16; 
7683.87s 

L=19; 
9926.29s 

L=21; 
13579.6s 

L=25; 
22179.3s 

Our method 
(nomthread) 

L=3; 
58.449 

L=5; 
198.446 

L=5; 
281.162 

L=9; 
1933.67s 

L=9; 
2274.8s 

L=9; 
2787.49s 

L=9; 
3225.01s 

L=11; 
6464.03s 

L=11; 
7173.77s 

Our method 
(mthread) 

L=3; 
58.449 

L=5; 
198.84 

L=5; 
203.626 

L=9 
1240.6s 

L=9; 
1290.82s 

L=9; 
1403.39s 

L=9; 
1410.64s 

L=11; 
2720.79s 

L=11; 
2860.57s 

Naive method: A binary multiplication method for the naive encoding matrix with multi-thread 
optimization. Sequential multiplication: A simple sequential multiplication from left to right for 
column-order encoding matrix. Our method (nomthread): A binary multiplication method in a tree 
structure for column-order encoding matrix without multi-thread optimization. Our method (mthread): 
A binary multiplication method in a tree structure for column-order encoding matrix with multi-thread 
optimization. “*”: The time is calculated based on their own estimate in [17]. s: second. h: hour. y: year. 
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Table 2. Secure multiple 64×64 matrix multiplication (k=80,p=257) 

Number of 
matrices 2(s) 3(s) 4(s) 5 6 7 8 9 10 

Mishra et 
al.[17] 

2.391 
 

240.485 
 

19238.8 
* 

427.529 
h* 

1425.096
d* 

312.35 
y* 

24987.99
y* 

1999039.
188y* 

15992313
5.058y* 

Naive 
method 

L=3; 
9703.5 

L=6; 
56630.9 

L=6; 
60053.2 # # # # # # 

Sequential 
Multiplication 

L=4; 
270.79 

L=6; 
1609.14 

L=9; 
4992.13 

L=11; 
10604.8s 

L=15; 
25276.8s 

L=18; 
30735.9s 

L=20; 
35087s 

L=21; 
61135.5s 

L=26; 
104518s 

Our method 
(nomthread) 

L=3; 
270.792 

L=6; 
1800.48 

L=6; 
2290.22 

L=9; 
7242.18s 

L=9; 
9008.77s 

L=9; 
10265.2s 

L=9; 
12085s 

L=11; 
23913.9s 

L=11; 
27000.3s 

Our method 
(mthread) 

L=3; 
270.792 

L=6; 
1744.22 

L=6; 
1738.44 

L=9; 
5411.52s 

L=9; 
5569.88s 

L=9; 
5757.94s 

L=9; 
6060.82s 

L=11; 
10828.6s 

L=11; 
10772.2s 

Naive method: A binary multiplication method for the naive encoding matrix with multi-thread 
optimization. Sequential multiplication: A simple sequential multiplication from left to right for 
column-order encoding matrix. Our method (nomthread): A binary multiplication method in a tree 
structure for column-order encoding matrix without multi-thread optimization. Our method (mthread): 
A binary multiplication method in a tree structure for column-order encoding matrix with multi-thread 
optimization. “*”: The time is calculated based on their own estimate in [17]. s: second. h: hour. d:day. 
y: year. #: The program runs out of memory. 
 
 

Fig. 5 and Fig. 6 illustrate pictorially the running time of all the above methods  for ten 
32×32 and 64×64 matrices multiplication respectively. As shown in these figures, the running 
time of Mishra et al. ’s work for  32×32 (64×64) matrices multiplication radically increases 
when n>=4. For ten 64×64 matrices multiplication, the program for the naive method runs out 
of memory when n>=5, and thus no time is given for these cases. 

 
 

 
Fig. 5. Secure multiple 32×32 matrix multiplication 
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Fig. 6. Secure multiple 64×64 matrix multiplication 

 
 

We also implement our algorithms for non-square matrix case. Table 3 shows our 
experimental results for ten non-square pi-1×pi (i=1,2,…,10) matrices multiplication. We 
meticulously select a set of ten matrices of size p0=40,p1=30,…,p10=25, which is suitable for 
the dynamic programming technique. 

 
 

Table 3. Secure multiple non-square matrix multiplication 
Dimensions of 

Matrices 40,30,35,15,60,5,70,10,50,20,25 

 L Init(s) Encrypt(s) Homo-Eval(s) Decrypt(s) Total(s) 
Naive method 9 2.254 129.375 # 10.048 # 

Dmethod 15 5.837 11.114 5030.36 5.044 5046.81 
Our method 11 3.639 7.965 5983.72 3.341 5995.16 

Naive method: A binary multiplication method for the naive encoding matrix with multi-thread 
optimization. Dmethod: A dynamic programming method for column-order encoding matrix. Our 
method: A binary multiplication method in a tree structure for column-order encoding matrix with 
multi-thread optimization. Init: The time for setting up system parameters. Encrypt: The time for 
encrypting ten matrices. Decrypt: The time for decrypting ten matrices. Total: The time for all 
computations. Homo-Eval: The time for homomorphic computation of the product of ten non-square 
matrices. s: second. #: The program runs out of memory.  
 
 

Fig. 7 illustrates pictorially the running time of all the sub-algorithms including 
initialization, encyption, decryption and homomorphic evaluation etc. As can been seen in the 
figure, our binary multiplication method enjoys similar performance to the dynamic 
programming method while the program based on the naive method runs out of memory. 
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Fig 7. Secure multiple non-square matrix multiplication 

7. Conclusion 
This paper investigates secure outsourced computation of multiple matrix multiplication based 
on fully homomorphic encryption. Our work radically improves the latest Mishra et al.’s 
method.  

First, we propose a column-order matrix encoding method extending Halevi et al.’s work. 
Our encoding method requires only fixed-size parameter, compared to Mishra et al.’s 
encoding which requires huge secure parameter. Second, we introduce a new method called 
binary multiplication for multiple matrix multiplication. Experimental results show that our 
method takes only thousands seconds while Mishra et al.’s method will takes tens of thousands 
of years for the product of ten matrices. Third, we further generalize our result from square 
matrix to non-square matrix multiplication. Experimental results show that binary 
multiplication method and dynamic programming method have a similar performance for 
multiple non-square matrix multiplication.  

A possible direction for future work is to combine other matrix encoding methods, e.g., 
Rathee et al.’s hypercube structure and Jiang et al. ’s method, into our framework to see if we 
can further improve efficiency of secure multiple matrix multiplication. 
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