
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, Nov. 2019 5616
Copyright ⓒ 2019 KSII

Secure Outsourced Computation of
Multiple Matrix Multiplication Based on

Fully Homomorphic Encryption

Shufang Wang, Hai Huang*
 School of Information, Zhejiang Sci-Tech University

Hangzhou, 310018, China
 [e-mail: shufangwang95@163.com, haihuang1005@gmail.com]

*Corresponding author: Hai Huang

Received January 1, 2019; revised April 2, 2019; accepted July 1, 2019;
published November 30, 2019

Abstract

Fully homomorphic encryption allows a third-party to perform arbitrary computation over
encrypted data and is especially suitable for secure outsourced computation. This paper
investigates secure outsourced computation of multiple matrix multiplication based on fully
homomorphic encryption. Our work significantly improves the latest Mishra et al.’s work. We
improve Mishra et al.’s matrix encoding method by introducing a column-order matrix
encoding method which requires smaller parameter. This enables us to develop a binary
multiplication method for multiple matrix multiplication, which multiplies pairwise two
adjacent matrices in the tree structure instead of Mishra et al.’s sequential matrix
multiplication from left to right. The binary multiplication method results in a
logarithmic-depth circuit, thus is much more efficient than the sequential matrix multiplication
method with linear-depth circuit. Experimental results show that for the product of ten 32×32
(64×64) square matrices our method takes only several thousand seconds while Mishra et al.’s
method will take about tens of thousands of years which is astonishingly impractical. In
addition, we further generalize our result from square matrix to non-square matrix.
Experimental results show that the binary multiplication method and the classical dynamic
programming method have a similar performance for ten non-square matrices multiplication.

Keywords: Secure outsourced computation, secure multiple matrix multiplication,
computation over encrypted data, fully homomorphic encryption

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.
LY16F020025 and Zhejiang Sci-Tech University Graduate Dissertation Development Fund No
2018-XWLWPY-M-06-03.

http://doi.org/10.3837/tiis.2019.11.019 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5617

1. Introduction

Cloud computing service allows users to outsource data processing and storage tasks to
cloud platform. However, storing data on cloud server somewhere could pose a severe threat
to users’ privacy as cloud managers could be curious. The issues of privacy in cloud
computing will probably lead to a number of privacy concerns and hinder the popularity of
cloud computing. A promising solution to address these concerns is fully homomorphic
encryption (FHE) which enables to perform arbitrary computations over encrypted data
without decrypting it first.

With fully homomorphic encryption a user can encrypt their private data locally and send
the ciphertexts to cloud platform which performs the computations on encrypted data and
sends back the result in the form of ciphertext to the user. Afterward, the user decrypts the
result with high certainty that no one else knows their private data. Fully homomorphic
encryption is a very powerful tool for outsourcing computations on confidential data and has
become increasingly popular in cloud computing security.

The first fully homomorphic encryption scheme was proposed by Gentry et al. [1] in 2009.
Since then, fully homomorphic encryption has been rapidly developed and a number of
improved schemes have been proposed [2-7]. On the other hand, fully homomorphic
encryption has been used to build a variety of outsourced computation applications, e.g.,
secure data statistics and machine learning [8-11].

Matrix multiplication is a fundamental and time consuming operation in many higher level
computations applications. An improvement in matrix multiplication will lead to a significant
improvement in the performance of the higher level applications. Halevi et al. [12] proposed
three different matrix encoding methods for matrix-vector multiplication based on single
instruction multiple data (SIMD) technique [13], i.e., row-order, column-order, diagonal-order.
Duong et al. [14] proposed a new matrix encoding method for secure matrix multiplication.
Recently, Rathee et al. [15] proposed a new matrix encoding method based on hypercube
structure and Jiang et al. [16] proposed a new matrix encoding method based on SIMD
technique.

All the methods above are only for secure multiplication for two matrices and there is little
work investigating secure multiple (n>2) matrix multiplication. The only work we are aware
of that investigated secure multiple matrix multiplication was proposed by Mishra et al. [17],
which is an extension of Duong et al. ’s [14] two matrices multiplication method. Let
A1 ,A2,…,An be square matrices with size of m×m. In order to support the multiple matrix
multiplication, they define the different encoding methods for each matrix Ai {i=1,…,n}
respectively and the next matrix requires larger parameter than the previous one. However,
such a large parameter makes homomorphic multiplication more slow. Thus, their method will
become impractical asymptotically as the number of matrices involved increases.

In this paper, our main aim is to improve Mishra et al.'s [17] work for further efficiency. Our
contributions are as follows.

First, we extend Halevi et al.’s [12] column-order matrix encoding from matrix/vector
multiplication into matrix-matrix multiplication. Compared to Mishra et al. ’s encoding
method, the main advantage of the column-order encoding method is that homomorphic
multiplication of two matrices will lead to the third one which is also in the form of
column-order encoding. This way, all the n matrices will be encoded with the fixed-size
parameter and thus our solution is much more efficient asymptotically.

5618 Huang et al. Secure outsourced computation of multiple matrix multiplication
based on fully homomorphic encryption

Second, Mishra et al. make use of sequential multiplication to calculate the product of
multiple matrices, which calculates the product of n matrices one by one from left to right. We
introduce a new method called binary multiplication, which multiplies pairwise two adjacent
matrices in the tree structure. Compared to Mishra et al.’ sequential multiplication, our
approach has lower multiplicative circuit depth and thus will be much more efficient. Further,
we optimize our method by multi-thread technique. Experimental results show that our
method takes 2860.57 seconds for the product of ten 32×32 matrices and 10772.2 seconds for
ten 64×64 matrices. Comparatively, Mishra et al.’s gave experimental results only for the
product of three 32×32 matrices and 64×64 matrices respectively. According to their own
estimate, Mishra et al.’s method will take about 21924468 years for ten 32×32 matrix and
about 159923135 years for ten 64×64 matrices which is astonishingly impractical. Thus, our
method is significantly faster than Mishra et al.’s method.

Third, we further generalize our result from square matrix to non-square matrix
multiplication. For multiple non-square matrix multiplication, we additionally introduce the
classical dynamic programming technique to calculate the product of ten non-square matrices.
Experimental results show that the binary multiplication method and the dynamic
programming method have a similar performance for multiple non-square matrix
multiplication. Specifically, they take 5995.16 seconds and 5046.81 seconds for the product of
some set of ten non-square matrices respectively.

2. Related Work
Some related works [18-22] focus on verifiable secure outsourcing of two matrix computation.
These solutions exploit specific properties of matrix multiplication and design special
protocols for secure outsourced matrix multiplication. Hopefully, these custom solutions are
more efficient than that based on fully homomorphic encryption. However, a disadvantage is
that each protocol must be designed, and proved secure, which are error-prone. Moreover,
none of the protocols above investigates secure outsourced computation of multiple matrix
multiplication.

Secure multiparty computation [23] is another general framework for secure outsourced
computation. However, this paradigm requires either significantly high communication
overhead between the client and the cloud server or assuming the existing of the two-server
[24] which is vulnerable to the collusion attack.

3. Preliminaries

3.1 Fully Homomorphic Encryption
Fully Homomorphic Encryption is an encryption method that allows anyone to compute an
arbitrary function f on an encryption of x, without knowledge of the private key. As a result,
one obtains an encryption of f(x).
Definition 1. The fully homomorphic encryption scheme consists of four procedures
ε= (KeyGen,Encryt,Decrypt,Evaluate) :
1. (,) (1)pk sk KeyGen λ← : It takes a security parameter λ as an input and outputs a public

key pk and a secret key sk.
2. (,)c Enc pk m← : It takes a public key and a plaintext, outputs a ciphertext c.
3. (,)m Dec sk c← : It takes a private key and a ciphertext, outputs a plaintext m.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5619

4. 1(, , ,...,)←f nc Eval pk f c c : It takes the public key, a function : nf P P→ , and a set of n
ciphertexts 1()nc ,...,c which is the encryption 1(,...,)nm m and outputs a ciphertext

fc which is the encryption of 1()nf m ,...,m .

3.2 BGV
BGV scheme [4] and its variants [5-6] are defined over ring-LWE of the
form [] / ()mx XΑ = Ζ Φ where ()m XΦ is the m'th cyclotomic polynomial. The ciphertext
space is set to be : /q qΑ = Α Α for an odd integer modulus q. A BGV-type scheme has a chain
of moduli, q0 < q1 < … < qL-1, where freshly encrypted ciphertexts are defined over largest
modulus AL-1. Ciphertexts defined over Aqi are called level-i ciphertexts.

The plaintext space for BGV scheme is the ring /Α = Α Αp p , where p is a prime. A salient
feature of BGV scheme and its variants is that it supports single instruction multiple data
(SIMD) parallel operations [13]. Under modulo p, the cyclotomic polynomial ()m xΦ can be

factorized into l distinct irreducible polynomials such that
1

() ()mod
l

m i
i

x F x p
=

F =∏ , each

with degree () /d m l= Φ . Each factor corresponds to a plaintext slot and the following
isomorphism (equation 1) holds.

1[] / () ... [] / () ...d dp p p l p p
Z x F x Z x F x F FΑ ≅ ⊗ ⊗ ≅ ⊗ ⊗ (1)

By the polynomial CRT, the polynomial pa∈Α decomposes into l slots 1() ()d
l l

i i p
a F= ∈ .

Thus, we can pack l messages into a single plaintext polynomial and perform l additions or
multiplications at the cost of just a single operation. Assume that 1(())l

i ia CRT a == and

1(())l
i ib CRT b == , we have the following equation 2.

-1
1

-1
1

(mod(,)) (mod(,))
(mod(,)) (mod(,))

l
m i i i i

l
m i i i i

CRT a b p a b p F
CRT a b p a b p F

=

=

 + F = +


⋅ F = ⋅
 (2)

Also, it is possible to rotate or permute the underlying plaintext slots in a batched vector by
applying automorphism mappings of the form : () ()ka X a Xk → where * /∈ < >mk Z p .

3.3 Dynamic Programming for Multiple Non-square Matrix Multiplication
Assume that there are n non-square matrices A1, A2, …, An with size p0 × p1, p1 × p2, p2 × p3, …,
pn-1 × pn and the goal is to calculate the product of n matrices. As matrix multiplication is
associative, no matter how a product of A1×A2…×An is parenthesized, the result obtained will
remain the same. However, the order in which the product is parenthesized has a signification
impact on the computational overhead of a product of n matrices. Dynamic programming [25]
is an optimization method for solving a complex problem by breaking it down into simpler
subproblems and can be used to determine the optimal parenthesization of a product of n
matrices.

Let m(i, j) denote the minimum number of multiplications for computing Ai × Ai+1 … × Aj.
A recursive formula is defined as follows (equation 3).

5620 Huang et al. Secure outsourced computation of multiple matrix multiplication
based on fully homomorphic encryption

{ }i-1 k ji k j-1

0 if i = j
m(i, j)= min m(i,k)+ m(k +1, j)+ p p p if i < j

≤ ≤





 (3)

As there are many overlapping subprobelms within this recursive formula, a direct recursive
algorithm will result in an exponential time complexity. Instead, one can solve this recursive
formula efficiently in either of two ways.

Top-down approach with memorization: Before trying to solve a sub-problem, we first
check memory table to see if the solution has already been stored. If a solution has been stored,
we just use it directly without computation, otherwise we solve the sub-problem and add its
solution into the table.

Bottom-up approach: We can reformulate the problem in a bottom-up fashion. Solving
the sub-problems first and use their solutions to build the solutions to bigger problems.

4. Mishra et al.’s Secure Multiple Matrix Multiplication Method

Let A be a m×m matrix. For each row 1(,...,)i i imA a a= of A, they define two polynomials in
[] / (+1)nR x x= Ζ as follows (equation 4).

2

(1) 1
,3

=1

(2) (1) 1
,3

=1

()

()

m
u

m i iu
u

m
n u m m

m i iu
u

pm A a x

pm A a x

−

− − − +


=


 = −


∑

∑
 (4)

Let A,B,C be three matrices with size of m×m. Mishra et al. [17] define three types of
polynomial in R for three matrices A,B,C as follows (equation 5).

2

3

(1) (1) (1)
,3 ,3

1

(2) (1) (1)
,3 ,3

1

(3) (2) (1)
,3 ,3

1

(A) ()

(B) ()

(C) ()

m
i m

m m i
i

m T j m
jm m

j

m
T k m

m m k
k

pol pm A x

pol pm B x

pol pm C x

−

=

−

=

−

=


=




=



=


∑

∑

∑

 (5)

Where 1(,...,)T
j j mjB b b= and T

kC are the thj and the thk columns of B and C respectively, and
T
j mj 1jB = (b ,...,b) . Define three types of packed ciphertext for a matrix A to

be () ()
,3(A) : ((A),)i i

mct Enc pol pk= for i=1,2,3.
Theorem 1 [17,Theorem 3]: Assume 4n m≥ . Let (1) (2) (3)(A)* (B)* (C)ct ct ct ct= and

let (,) tDec ct sk R∈ denote its decryption result. Then for each , {1,..., }∈i k m , the (,)thi k entry
of the matrix A×B×C is the coefficient of 3(1) (1)− + −i m k mx in (,)Dec ct sk .

An advantage of their encoding method is that whole matrix is encoded into one ciphertext,
thus the multiplication of two matrices requires only one homomorphic multiplication.
However, the drawback of Mishra et al.’s scheme is that each matrix requires different
encoding method and the next matrix requires a factor of m larger parameter to encode than the
previous one. This method for three matrices is about 80 ∼ 100 times slower than two matrices
case. They estimated [17] that as the number of matrices increase, the running time will be at

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5621

least about 80 times slower. Thus, their method will become impractical asymptotically as the
number of matrix increases.

5. Our Secure Multiple Matrix Multiplication Schemes

5.1 A Naive Method
A naive method for secure multiple matrix multiplication is to encrypt each entry in each
matrix by one ciphertext as shown in Fig.1, then use traditional matrix multiplication in
ciphertext domain as shown in Fig. 2 This simple solution is able to multiply multiple matrices
with fixed-size parameter.

1,1 1, 1,1 1,

,1 , ,1 ,

() . . . () . . .
.
.
.
() . . . () . . .

m m

pk

m m m m m m

enc a enc a a a

enc a enc a a a

   
   
   
   ←
   
   
   
   

Fig. 1. Encrypt each entry in each matrix

Fig. 2. Traditional matrix multiplication in ciphertext

Obviously, the main drawback of this naive method is that it requires one ciphertext for each

entry of a matrix.This results in m2 ciphertext for each matrix and O(m3) operations for two
matrix multiplication, which require a lot of time and space depending on the size of the input
matrix.

5.2 Secure Column-order Matrix multiplication
Halevi et al. [12] proposed three different matrix encoding methods for matrix-vector
multiplication, i.e., row-order, column-order, diagonal-order. We adopt column-order method
and generalize it to matrix-matrix multiplication. Assume that A,B are two m×m matrices and
C=A×B. We can write A,B in the form of column order by equation 6

1 1A (| ... |),B (| ... |)m m= =a a b b (6)
where both { }i 1i 2i mi i 1i 2i mi= (a ,a ,...,a), = (b ,b ,...,b) i = 1,2,...,ma b are m dimensional column
vectors. Now we rewrite C as equation 7

1
1 1

C (| ... |)
i m i m

i i im i
i i

b b
= =

= =

= ∑ ∑a a (7)

Now we transform the column-order matrix multiplication method above into the ciphertext
domain. Assume that ct(A),ct(B) are ciphertexts of two matrices A,B, which are encrypted
column-wise as equation 8

1 1(A) (| ... |), (B) (| ... |)m mct u u ct v v= = (8)
where ,i iu v is the encryption of i i,a b respectively by SIMD technique. In order to perform
matrix multiplication homomorphically, we first apply replicate operation [12] to each column

5622 Huang et al. Secure outsourced computation of multiple matrix multiplication
based on fully homomorphic encryption

of ct(B) obtaining the m2 ciphertexts 1 2, ,..., { 1,2,..., }i i imv v v i m= such that { , 1,2,..., }ijv i j m= is
the encryption of [] =i jij bb in all positions. Now we have equation 9.

1
1 1

(C) (A) (B) (| ... |)
i m i m

i i i mi
i i

ct ct ct u v u v
= =

= =

= × = ∑ ∑ (9)

Our method for secure column-order matrix multiplication is defined in Algorithm 1.

Algorithm 1: Secure-Matrix-Multiplication(ct(A),ct(B))

Input: ct(A),ct(B) // The ciphertexts of matrices A,B
Output: ct(AB) //The ciphertext of matrix AB
for j=1 to m

for i=1 to m
ct(temp)=ct(A)[i] ×replicate(ct(B)[j],i)
ct(C)[j]= ct(C)[j]+ct(temp)
end for

end for
ct(AB)←ct(C)
return ct(AB)

The following example shown in Fig. 3 demonstrates how the secure matrix multiplication

is performed.

Fig. 3. Secure column-order matrix multiplication

Note that the main advantage of the column order encoding method is that the resulting

ciphertext ct(C) is also in column order which enables to keep on multiplying ct(C) with next
encrypted matrix homomorphically in the same way as above. As all matrices can are encoded
in column order, we can select a fixed-size parameter for all matrices. Thus, our encoding
method is much more efficient compared to Mishra et al.’s encoding method which requires a
factor of 80 times larger paramerters as the number of matrix increases.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5623

5.3 Binary Multiplication Method for Secure Multiple Matrix Multiplication
With the column order encoding technique, a natural method to calculate the product of n
matrices A1,A2,…,An is to multiply them sequentially as above. However, the sequential
multiplication method creates a circuit with multiplicative depth,
where denotes the circuit depth of two-matrix multiplication. We propose a better
method called binary multiplication method multiplying two adjacent matrices pairwise in a
tree structure shown in Fig. 4. The product of n matrices creates a circuit with

multiplicative depth. Therefore, . The reduced circuit
depth allows much slower noise growth and thus enable us to select smaller parameters in the
underlying fully homomorphic encryption scheme resulting in a greater efficiency. Our
technique for binary multiplication method for secure multiple matrix multiplication is defined
in Algorithm 2.

Fig. 4. Binary multiplication method for secure multiple matrix multiplication

Algorithm 2: Binary-Multiplication (ct(A1), ct(A2),…, ct(An))

Input: B=(ct(A1), ct(A2),…, ct(An)) //B stores a vector of encrypted matrices
Output: ct(A1×A2…×An) //The final result of multiple matrix multiplication
N=n
for L=1 to

m=N //m is the number of matrices involved in level L
N=(m+1)/2 //N is the number of matrices involved in level L+1
for i=1 to N

if(m%2==1&&i==N) //If m is odd, no multiplication is required for the last matrix
 Bi=Bi*2

else
 Bi = Secure-Matrix-Multiplication(Bi*2-1,Bi*2)

end for
end for
return B1 //The final result is stored in first element B1

5624 Huang et al. Secure outsourced computation of multiple matrix multiplication
based on fully homomorphic encryption

5.4 Secure Multiple Non-square Matrix Multiplication
If input matrices are non-square, we could further apply the dynamic programming method to
find the most efficient way to perform the product of multiple matrices. Assume that matrix Ai

with size of pi-1×pi (i=1,2,…,n). Given a sequence of (p0,p1,…,pn), the dynamic programming
algorithm with bottom-up approach [25] as shown in Algorithm 3 outputs {si,j}1<=i<=n,1<=j<=n
which stores optimal parenthesized location for a product of Ai×Ai+1…×Aj.

Alogorithm 3: Matrix-Chain-Order (p0,p1,…,pn) [25]

Input: p0,p1,…,pn //pi-1,pi are the row and column dimensions of matrix Ai
Output: {si,j}1<=i<=n, 1<=j<=n //The optimal parenthesized location for Ai×Ai+1…×Aj
For i=1 to n
m[i,i] = 0 //Initialization
for r=2 to n //r is the length of subchain of matrix

for i=1 to n-r+1
j=i+r-1
m[i,j]=MAXINT //m stores the minimum value of multiplication for Ai×Ai+1…×Aj
for k=i to j-1

min = m[i, k] + m[k + 1, j] + pi-1×pk×pj
if min<m[i,j]

 {
m[i,j]=min
si,j =k //The optimal parenthesized location for Ai×Ai+1…×Aj
}

end for
end for

end for

Given {si,j}1<=i<=n, 1<=j<=n and a vector of encrypted matrices (ct(A1), ct(A2),…, ct(An), the

Algorithm 4 outputs the final result ct(A1×A2…×An).

Algorithm 4: Secure-Multiple-Matrix-Multiplication(s,i,j,B)

Input:
-{si,j}1<=i<=n, 1<=j<=n //{si,j} stores the optimal parenthesized location for Ai×Ai+1…×Aj.
-i=1 //i is the index of first matrix
-j=n //j is the index of last matrix
-B=(ct(A1), ct(A2),…, ct(An)) //B stores the vector of encrypted matrices
Output: ct(A1×A2…×An) //The final result of multiple matrix multiplication
if(i==j)
 return Bi
else
{

T1=Secure-Multiple-Matrix-Multiplication (s, i, si,j, B)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5625

T2=Secure-Multiple-Matrix-Multiplication (s, si,j+1, j, B)
T = Secure-Matrix-Multiplication (T1, T2)
return T

}

6. Implementation and comparison
In this section, we implement our algorithms in Section 5 and compare them with Mishra et
al.’s method. Our experiments run on an Intel® Xeon® Gold 6148 CPU with 2.40 GHz and
503G RAM, using HElib library [26] in C++ programs for the implementation of BGV
scheme and its variants. We basically need to select the following parameters.
-L: the number of moduli for leveled ciphertext spaces
-p: a prime plaintext modulus
-k: the security level
-slot: the number of slots

Targeting k=80-bits of security and selecting an appropriate depth parameter L and plaintext
modulus p=257, we get the results in Table 1 and Table 2, which show the performances for
multiple 32×32 (slot>=32) and 64×64 (slot>=64) matrix multiplication.

Mishra et al. [17] implemented their method for two and three 32×32 (64×64) matrices
multiplication in Intel Core i7-4790 CPU with 3.60 GHz and 8.00GB RAM in C programs. As
shown in Table 1 and Table 2, for the product of two or three 32×32 (64×64) matrices, Mishra
et al.’s method is more efficient than ours. However, when n>=4, our method significantly
outperforms Mishra et al.’s method.

They estimated [17] that as the number of matrices increase, the running time will be at least
about 80 times slower. Thus, a simple calculation shows that for ten 32×32 (64×64) matrices
multiplication, their method will take about 21924468 (159923135) years which is an
astronomical figure. In comparison, our method with multi-thread optimization takes only
2860.57 (10772.2) seconds for ten 32×32 (64×64) matrices multiplication.

In addition, our method also outperforms the naive method which takes 19003.3 seconds for
ten 32×32 matrices multiplication as shown in Table 1. For ten 64×64 matrices multiplication,
the program based on the naive method runs out of memory when n>=5 as shown in Table 2.

Table 1. Secure multiple 32×32 matrix multiplication (k=80,p=257)
Number of
matrices

2(s) 3(s) 4(s) 5 6 7 8 9 10

Mishra et
al.[17]

0.297 32.969 2637.52* 58.611h
*

4688.92h
*

42.82y
*

3425.698
y*

274055.8
58y*

2192446
8.63y*

Naive
Method

L=3;
418.398

L=5;
1926.43

L=5;
2021.51

L=7;
6298.53s

L=7;
6409.88s

L=7;
6410.65s

L=7;
7318.12s

L=9;
17848.2s

L=9;
19003.3s

Sequential
Multiplication

L=3;
58.449

L=5;
167.65

L=9;
1162.09

L=11;
2416.2s

L=15;
5593.28s

L=16;
7683.87s

L=19;
9926.29s

L=21;
13579.6s

L=25;
22179.3s

Our method
(nomthread)

L=3;
58.449

L=5;
198.446

L=5;
281.162

L=9;
1933.67s

L=9;
2274.8s

L=9;
2787.49s

L=9;
3225.01s

L=11;
6464.03s

L=11;
7173.77s

Our method
(mthread)

L=3;
58.449

L=5;
198.84

L=5;
203.626

L=9
1240.6s

L=9;
1290.82s

L=9;
1403.39s

L=9;
1410.64s

L=11;
2720.79s

L=11;
2860.57s

Naive method: A binary multiplication method for the naive encoding matrix with multi-thread
optimization. Sequential multiplication: A simple sequential multiplication from left to right for
column-order encoding matrix. Our method (nomthread): A binary multiplication method in a tree
structure for column-order encoding matrix without multi-thread optimization. Our method (mthread):
A binary multiplication method in a tree structure for column-order encoding matrix with multi-thread
optimization. “*”: The time is calculated based on their own estimate in [17]. s: second. h: hour. y: year.

5626 Huang et al. Secure outsourced computation of multiple matrix multiplication
based on fully homomorphic encryption

Table 2. Secure multiple 64×64 matrix multiplication (k=80,p=257)

Number of
matrices 2(s) 3(s) 4(s) 5 6 7 8 9 10

Mishra et
al.[17]

2.391

240.485

19238.8
*

427.529
h*

1425.096
d*

312.35
y*

24987.99
y*

1999039.
188y*

15992313
5.058y*

Naive
method

L=3;
9703.5

L=6;
56630.9

L=6;
60053.2 # # # # # #

Sequential
Multiplication

L=4;
270.79

L=6;
1609.14

L=9;
4992.13

L=11;
10604.8s

L=15;
25276.8s

L=18;
30735.9s

L=20;
35087s

L=21;
61135.5s

L=26;
104518s

Our method
(nomthread)

L=3;
270.792

L=6;
1800.48

L=6;
2290.22

L=9;
7242.18s

L=9;
9008.77s

L=9;
10265.2s

L=9;
12085s

L=11;
23913.9s

L=11;
27000.3s

Our method
(mthread)

L=3;
270.792

L=6;
1744.22

L=6;
1738.44

L=9;
5411.52s

L=9;
5569.88s

L=9;
5757.94s

L=9;
6060.82s

L=11;
10828.6s

L=11;
10772.2s

Naive method: A binary multiplication method for the naive encoding matrix with multi-thread
optimization. Sequential multiplication: A simple sequential multiplication from left to right for
column-order encoding matrix. Our method (nomthread): A binary multiplication method in a tree
structure for column-order encoding matrix without multi-thread optimization. Our method (mthread):
A binary multiplication method in a tree structure for column-order encoding matrix with multi-thread
optimization. “*”: The time is calculated based on their own estimate in [17]. s: second. h: hour. d:day.
y: year. #: The program runs out of memory.

Fig. 5 and Fig. 6 illustrate pictorially the running time of all the above methods for ten
32×32 and 64×64 matrices multiplication respectively. As shown in these figures, the running
time of Mishra et al. ’s work for 32×32 (64×64) matrices multiplication radically increases
when n>=4. For ten 64×64 matrices multiplication, the program for the naive method runs out
of memory when n>=5, and thus no time is given for these cases.

Fig. 5. Secure multiple 32×32 matrix multiplication

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5627

Fig. 6. Secure multiple 64×64 matrix multiplication

We also implement our algorithms for non-square matrix case. Table 3 shows our
experimental results for ten non-square pi-1×pi (i=1,2,…,10) matrices multiplication. We
meticulously select a set of ten matrices of size p0=40,p1=30,…,p10=25, which is suitable for
the dynamic programming technique.

Table 3. Secure multiple non-square matrix multiplication
Dimensions of

Matrices 40,30,35,15,60,5,70,10,50,20,25

 L Init(s) Encrypt(s) Homo-Eval(s) Decrypt(s) Total(s)
Naive method 9 2.254 129.375 # 10.048 #

Dmethod 15 5.837 11.114 5030.36 5.044 5046.81
Our method 11 3.639 7.965 5983.72 3.341 5995.16

Naive method: A binary multiplication method for the naive encoding matrix with multi-thread
optimization. Dmethod: A dynamic programming method for column-order encoding matrix. Our
method: A binary multiplication method in a tree structure for column-order encoding matrix with
multi-thread optimization. Init: The time for setting up system parameters. Encrypt: The time for
encrypting ten matrices. Decrypt: The time for decrypting ten matrices. Total: The time for all
computations. Homo-Eval: The time for homomorphic computation of the product of ten non-square
matrices. s: second. #: The program runs out of memory.

Fig. 7 illustrates pictorially the running time of all the sub-algorithms including
initialization, encyption, decryption and homomorphic evaluation etc. As can been seen in the
figure, our binary multiplication method enjoys similar performance to the dynamic
programming method while the program based on the naive method runs out of memory.

5628 Huang et al. Secure outsourced computation of multiple matrix multiplication
based on fully homomorphic encryption

Fig 7. Secure multiple non-square matrix multiplication

7. Conclusion
This paper investigates secure outsourced computation of multiple matrix multiplication based
on fully homomorphic encryption. Our work radically improves the latest Mishra et al.’s
method.

First, we propose a column-order matrix encoding method extending Halevi et al.’s work.
Our encoding method requires only fixed-size parameter, compared to Mishra et al.’s
encoding which requires huge secure parameter. Second, we introduce a new method called
binary multiplication for multiple matrix multiplication. Experimental results show that our
method takes only thousands seconds while Mishra et al.’s method will takes tens of thousands
of years for the product of ten matrices. Third, we further generalize our result from square
matrix to non-square matrix multiplication. Experimental results show that binary
multiplication method and dynamic programming method have a similar performance for
multiple non-square matrix multiplication.

A possible direction for future work is to combine other matrix encoding methods, e.g.,
Rathee et al.’s hypercube structure and Jiang et al. ’s method, into our framework to see if we
can further improve efficiency of secure multiple matrix multiplication.

References
[1] Craig Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc. of the forty-first annual

ACM symposium on Theory of computing (STOC '09), pp. 169-178, 2009. Article (CrossRef Link)
[2] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan, “Fully homomorphic

encryption over the integers,” in Proc. of EUROCRYPT, pp. 24-43, 2010. Article (CrossRef Link)
[3] Zvika Brakerski and Vinod Vaikuntanathan, “Efficient fully homomorphic encryption from

(standard) LWE,” in Proc. of IEEE 52nd Annual Symposium on Foundations of Computer Science
(FOCS 2011), pp. 97-106, October 22-25, 2011. Article (CrossRef Link)

[4] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan, “(Leveled) fully homomorphic
encryption without bootstrapping,” in Proc. of the 3rd Innovations in Theoretical Computer
Science Conference (ITCS '12), pp. 309-325, 2012. Article (CrossRef Link)

[5] Craig Gentry, Shai Halevi, and Nigel P. Smart, “Fully homomorphic encryption with polylog
overhead,” in Proc. of the 31st Annual international conference on Theory and Applications of
Cryptographic Techniques (EUROCRYPT'12), pp. 465-482, 2012. Article (CrossRef Link)

https://doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1109/FOCS.2011.12
http://dx.doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-642-29011-4_28

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5629

[6] Gentry, C., Halevi, S., Smart, N.P, “Homomorphic evaluation of the aes circuit,” in Proc. of
Advances in Cryptology-CRYPTO 2012, pp. 850-867, 2012. Article (CrossRef Link)

[7] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptoticallyfaster, attribute-based,” in Proc. of Adv. Crypto 2013, pp.
75–92, 2013. Article (CrossRef Link)

[8] D. Wu and J. Haven, “Using homomorphic encryption for large scale statistical analysis,”
Technical Report, 2012. Article (CrossRef Link)

[9] Wen-jie Lu, Shohei Kawasaki, Jun Sakuma, “Using Fully Homomorphic Encryption for Statistical
Analysis of Categorical, Ordinal and Numerical Data,” in Proc. of 24th Annual Network and
Distributed System Security Symposium, 2017. Article (CrossRef Link)

[10] Graepel, T., Lauter, K., Naehrig, M., “Ml confidential: Machine learning on encrypted data,” in
Proc. of the 15th International Conference on Information Security and Cryptology, pp. 1-21, 2012.
Article (CrossRef Link)

[11] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing, “CryptoNets: applying neural networks to encrypted data with high throughput and
accuracy,” in Proc. of the 33rd International Conference on International Conference on Machine
Learning, vol. 48, pp. 201-210, 2016. Article (CrossRef Link)

[12] Halevi S, Shoup V, “Algorithms in Helib,” in Proc. of Advances in Cryptology-CRYPTO 2014, pp.
554-571,2014. Article (CrossRef Link)

[13] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,” Des. Codes
Cryptography, vol 71, pp. 57-81, 2014. Article (CrossRef Link)

[14] Dung Hoang Duong, Pradeep Kumar Mishra, Masaya Yasuda, “Efficient Secure Matrix
Multiplication Over LWE-Based Homomorphic Encryption,” Tatra Mountains Mathematical
Publications, vol 67, pp. 69-83, 2016. Article (CrossRef Link)

[15] Deevashwer Rathee, Pradeep Kumar Mishra, and Masaya Yasuda, “Faster PCA and Linear
Regression through Hypercubes in Helib,” in Proc. of the 2018 Workshop on Privacy in the
Electronic Society (WPES'18), pp. 42-53, 2018. Article (CrossRef Link)

[16] Xiaoqian Jiang, Miran Kim, Kristin Lauter and Yongsoo Song, “Secure Outsourced Matrix
Computation and Application to Neural Networks,” in Proc. of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS '18), pp.1209-1222, 2018.
Article (CrossRef Link)

[17] Mishra P.K., Duong D.H., Yasuda M, “Enhancement for Secure Multiple Matrix Multiplications
over Ring-LWE Homomorphic Encryption,” in Proc. of Information Security Practice and
Experience (ISPEC 2017), vol. 10701, pp. 320-333, 2017. Article (CrossRef Link)

[18] David Benjamin and Mikhail J. Atallah, “Private and Cheating-Free Outsourcing of Algebraic
Computations,” in Proc. of the 2008 Sixth Annual Conference on Privacy, Security and Trust (PST
'08), pp. 240-245, 2008. Article (CrossRef Link)

[19] Mikhail J. Atallah and Keith B. Frikken, “Securely outsourcing linear algebra computations,” in
Proc. of the 5th ACM Symposium on Information, Computer and Communications Security
(ASIACCS '10), pp. 48-59, 2010. Article (CrossRef Link)

[20] Heriniaina F, Lei X, Huang T, et al, “Achieving security, robust cheating resistance, and
high-efficiency for outsourcing large matrix multiplication computation to a malicious cloud,”
Information Sciences, vol. 280, pp. 205-217, 2014. Article (CrossRef Link)

[21] P. Mohassel, “Efficient and Secure Delegation of Linear Algebra,” IACR Cryptology ePrint
Archive, 2011. Article (CrossRef Link)

[22] D. Fiore and R. Gennaro, “Publicly verifiable delegation of large polynomials and matrix
computations, with applications,” in Proc. of the 2012 ACM conference on Computer and
communications security, pp. 501–512, 2012. Article (CrossRef Link)

[23] Andrew Chi-Chih Yao, “How to generate and exchange secrets,” in Proc. of the 27th Annual
Symposium on Foundations of Computer Science (FOCS '86), pp. 162-167, 1986.
Article (CrossRef Link)

https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-40041-4_5
https://www.cs.virginia.edu/dwu4/fhe-si.html
http://dx.doi.org/10.14722/ndss.2017.23119
https://doi.org/10.1007/978-3-642-37682-5_1
https://dl.acm.org/citation.cfm?id=3045413&tdsourcetag=s_pcqq_aiomsg
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1515/tmmp-2016-0031
https://doi.org/10.1145/3267323.3268952
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1007/978-3-319-72359-4_18
https://doi.org/10.1109/PST.2008.12
http://dx.doi.org/10.1145/1755688.1755695
https://doi.org/10.1016/j.ins.2014.05.014
https://eprint.iacr.org/2011/605
https://doi.org/10.1145/2382196.2382250
https://doi.org/10.1109/SFCS.1986.25

5630 Huang et al. Secure outsourced computation of multiple matrix multiplication
based on fully homomorphic encryption

[24] P. Mohassel and Y. Zhang, “SecureML: A System for Scalable Privacy-Preserving Machine
Learning,” in Proc. of 2017 IEEE Symposium on Security and Privacy (SP), pp. 19-38, 2017.
Article (CrossRef Link)

[25] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to
Algorithms, Third Edition (3rd ed.), The MIT Press, 2009. Article (CrossRef Link)

[26] Halevi, S., Shoup, V., “Design and implementation of a homomorphic-encryption library,”
Technical Report, 2012. Article (CrossRef Link)

Shufang Wang is a postgraduate student at the Zhejiang Sci-Tec University, Hangzhou,
China. She is interested in secure outsourced computation and fully homomorphic
encryption.

Hai Huang is an Associate Professor at the Zhejiang Sci-Tech university, Hangzhou, China.
He obtained his Ph.D. degree in Computer Science from Shanghai Jiaotong University,
China in 2010. He is broadly interested in the general area of security, privacy, and applied
cryptography.

https://doi.org/10.1109/SP.2017.12
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://www.semanticscholar.org/paper/Design-and-Implementation-of-a-Library-Halevi-Shoup/ada2c9f837e425f5fc94fcb4c7cfc230c9a18f0e

