
 2D Mesh SIMD 구조에서의 병렬 행렬 곱셈의 수치적 성능 분석

7

접수일자 : 2011년 02월 08일

심사일자 : 2011년 02월 10일

수락일자 : 2011년 03월 20일

*교신저자, E-mail : cgkim@nsu.ac.kr

2D Mesh SIMD 구조에서의 병렬 행렬 곱셈의 수치적

성능 분석

論 文

10-1-2

An Analytical Evaluation of 2D Mesh-connected SIMD Architecture for

Parallel Matrix Multiplication

김 정 길*

Cheong-Ghil Kim

Abstract

Matrix multiplication is a fundamental operation of linear algebra and arises in many areas of science and engineering. This
paper introduces an efficient parallel matrix multiplication scheme on N × N mesh-connected SIMD array processor, called multiple
hierarchical SIMD architecture (HMSA). The architectural characteristic of HMSA is the hierarchically structured control units
which consist of a global control unit, N local control units configured diagonally, and N2 processing elements (PEs) arranged
in an N × N array. PEs are communicating through local buses connecting four adjacent neighbor PEs in mesh-torus networks
and global buses running across the rows and columns called horizontal buses and vertical buses, respectively. This architecture
enables HMSA to have the features of diagonally indexed concurrent broadcast and the accessibility to either rows (row control
mode) or columns (column control mode) of 2D array PEs alternately. An algorithmic mapping method is used for performance
evaluation by mapping matrix multiplication on the proposed architecture. The asymptotic time complexities of them are evaluated
and the result shows that paralle matrix multiplication on HMSA can provide significant performance improvement.

Keywords : OpenCL, many-core GPU, parallel programming, convolution

I. Introduction

In recent years, microprocessors are becoming in-

creasingly parallel machines. Multi-core processors

with media extension ISA (Instruction Set Architecture)

already has been the dominant trend in processor design

and GPUs are getting popular as a computing platform

for general purpose workloads as the main engine in-

creasing the performance of microprocessors [1-3]. As

this trend continues, the parallel programming of core

computations could be the best solution for substantially

improving application performance [4].

Typically, parallel machines can be abstracted as the

number of CPUs or PEs (processing elements) connected

with each other using communication networks. Such

that they have been implemented on the basis of two

major architectural models: SIMD (Single-Instruction

stream Multiple-Data streams) and MIMD

(Multiple-Instruction streams Multiple-Data streams)

[5]. A distinct difference between SIMD and MIMD

architecture is the control organization. SIMD machines

have a central control unit that broadcasts a single

stream of instructions to PEs for concurrent synchro-

nous execution. In contrast, MIMD machines are dis-

tributed; each PE has an associated control unit. Thus,

PEs on MIMD machines are stand-alone serial process-

정보통신설비학회 논문지 제10권 제1호 (2011. 03)

8

그림 1. 2D Mesh SIMD 구조

Fig. 1. 2D Mesh SIMD Architecture

ors, with a control unit, a datapath, and local memory.

As for workloads of current microprocessors, typical

applications are shifting towards data intensive and vec-

tor-oriented media type ones which encompass matrix

computations in many situations. It is intuitive that par-

allel processing is required and SIMD approaches pro-

vide a good match to those applications.

To accelerate the computations of data intensive ap-

plications, 2D SIMD array has been implemented on

various hardware architectures since the first SIMD

machine project, ILLIAC IV [6]. They were introduced

in the form of special purpose processor or coprocessor

and intelligent memory systems of a workstation or

server [7-10]. Furthermore, the increasing demands for

multimedia application have brought architectural en-

hancements on general purpuse processors. One of these

enhancements is SIMD mode multimedia extensions.

Intel's MMX (Multimedia eXtension) [11] and SSE

(Streaming SIMD Extensions) [12] belong to this

category. They may have relatively small scale of SIMD

mode parallelism compared to the previous SIMD sys-

tems mainly formed by large hardware systems, but

have brought the significant speed up of SIMD techni-

ques for complex data parallel applications.

This paper presents an efficient parallel matrix multi-

plication and transpose scheme on HMSA [13]. For the

performance evaluation of matrix multiplication is map-

ped onto the proposed array architecture and compared

with the previous architectures in terms of the number

of computation steps analytically.

The organization of this paper is as following. In

Section 2, the architecture and operational model of

HMSA is reviewed. Section 3 describes the parallel

matrix programming paradigms on HMSA. In section

4, the experimental results will be discussed; finally

the conclusion will be addressed in Section 5.

II. HMSA

1. Architectural Overview

HMSA is a modified SIMD architecture consist-

ing of a global control unit, N local control units

configured diagonally, and N2 processing elements

(PEs) arranged in an N × N array with local buses

connecting with adjacent four neighbor PEs in a

mesh network and global buses running across the

rows and columns called vertical buses (VBUS)

and horizontal buses (HBUS). Figure 1 shows an

example of 4 × 4 PE configuration of HMSA. There

are four local CUs located at the diagonal position

for this given torus configuration. Both CUs and

PEs have their own memory CM (Control Memory)

and PM (Processing Memory), respectively.

The architectural characteristic of HMSA is the

hierarchical construction of control units to provide

an efficient PE control mechanism. GCU controls

and synchronizes all N local CUs, and provides all

the interfaces with outsides for programming and

communications. The N diagonal CUs directly per-

form the control of PEs with two different modes,

i.e., RC-mode and CC-mode. The former allows all

PEs to operate on row basis, and the latter does

identically on column basis.

 This control scheme can be efficiently utilized

for the various linear algebra applications with the

effective behavioral advantages in the point of

performance. First, the HMSA can allow the diago-

nally indexed concurrent broadcast. This feature

enables the efficient delivery of each operand vec-

tor to other PEs at the same time instead of sending

 2D Mesh SIMD 구조에서의 병렬 행렬 곱셈의 수치적 성능 분석

9

그림 2. HMSA에서의 행렬 곱셈 알고리즘

Fig. 2. Algorithm for matrix multiplication on HMSA

each element of an operand vector which is a com-

mon way in two-dimensional SIMD arrays.

Therefore, the matrix-by-vector products can be

performed in a single cycle because the operand

vector transmission operation can be overlapped

with multiplication. Second, the HMSA provides a

flexible process control mechanism for PE ex-

ecution by the RC-mode and CC-mode.

Each PE in the HMSA is constructed as an ALU,

a shifter, a set of general-purpose registers, several

special-purpose registers and its dual ported

memory. Special purpose registers consist of a

row/column broadcasting register, a receiving reg-

ister from neighborhood PEs, and a sending regis-

ter to neighborhood PEs. Also two data broadcast

buses, i.e., the horizontal data broadcast bus for

RC-mode (HBUS) and the vertical data broadcast

bus (VBUS) for CC-mode are constructed.

2. Parallel Matrix Multiplication

For the mapping processes, some assumptions of

the HMSA system and matrix multiplication are

made. Matrix A and B for multiplication should be

already stored at the memory block of each PE. The

size of each matrix and the number of processing

units are assumed to be N × N and P, respectively.

If N is smaller than  , then the elements aij and

bij of A and B are stored at the processor memory

block of PE, PMi,j, which is logically located at the

jth column of the ith row, otherwise a different

method to store the matrices at the memory is

required. In that case both A and B should be div-

ided into submatrices whose sizes should fit into

the size of memory. Each row submatrix of A, Ai,k

and each column submatrix of B, Bk,j should be

stored at the same PM. The pseudo code of the

proposed matrix multiplication is shown in Figure

2. To perform a matrix multiplication in the HMSA,

every PEi,j for all 0 ≤ i, j ≤   computes in

parallel by accessing the memory block PMi,j.

The computing process is described as follows.

First, every PEi',k' for all 0 ≤ i', k' ≤    fetch-

es the first operands which are element ai',k' of sub-

matrix Ai,k (0 ≤ i, k ≤  ) in matrix A to

their local registers in parallel in line 7 of Figure

2. Second, using the same method, every PEk',j' for

all 0 ≤ k', j' ≤   fetches the second operands

which are element bk',j' of submatrix Bk,j (0 ≤ k,

j ≤  ) in matrix B to their local registers

in parallel in line 10. Third, every PEi',m(i') (m(i')

= (i' + k') mod) for all 0 ≤ i' ≤   con-

currently broadcasts the first operand vector to

each own row processor group by RC-mode and

then every PEi',j' for all 0 ≤ i', j' ≤   multi-

plies the broadcasted operand by the second oper-

and and accumulates the result product as shown

in lines 14-16. After finishing the MAC (multi-

ply-and-accumulate) operation, every PEi',j' for all

0 ≤ i', j' ≤   shifts up the second operand

as shown in line 17. Finally, every PEi',j' for all 0

≤ i', j' ≤   writes MAC operation results

which are element ci',j' of submatrix Ci,j (0 ≤ i, j

≤  ) in matrix C to their local memory block

정보통신설비학회 논문지 제10권 제1호 (2011. 03)

10

그림 3. C=A×B 행렬 곱셈의 데이터 이동

Fig. 3. Communication steps of matrix multiplication C=A×B Algorithm Cannon Fox

Pre and Post

processing

skewing of

A and B
none

Computation

of C
locally locally

Movements

of A

horizontal

rollings

horizontal

broadcast

Movements

of B

vertical

rollings

vertical

rollings

표 1. 통신방식

Table 1. Communication patterns

PMi',j' in parallel in line 22. The above processes are

repeated until finishing the computation for the entire

matrices. The communication steps in HMSA system

for C = A × B, with N = 4 and P = 16, is illustrated

in Figure 3.

For the above processes, all local CUs in the HMSA

system can concurrently broadcast each operand vec-

tor to those of PEs belonging to each local CU by

RC-mode. Because the flexible control mode of HMSA

system can be performed by CC-mode as well, it can

effectively supported the operation which needs the

transposed matrix multiplication. This efficient mech-

anism is applicable to any other linear algebra problem

using the pattern similar to matrix multiplication.

Therefore, the number of computation steps required

to perform a matrix multiplication by HMSA can be

obtained as







    

  

 







(1)

In the above equation, Tload is the time to read

the data from the memory block; Tbroadcast to per-

form operand broadcasting; Tmult to perform multi-

plication; Tadd to perform addition; Tsend to perform

operand shifting; Tstore to write the data to the

proper memory block. Each of Tload, Tbroadcast, Tmult,

Tadd, Tsend, and Tstore is assumed to take one unit

time.

III. Performance Evaluation

Cannon’s algorithm [14, 15] and Fox’s algorithm

[14, 16] are widely used as a parallel matrix

multiplication. Here, they are applied to a torus and

compared with the proposed algorithm in terms of

the number of computation steps. The communica-

tion patterns of the two algorithms are shown in

Table 1.

First, Cannon proposed a memory efficient par-

allel algorithm, in which two N × N matrices A

and B are divided into square submatrix of size

among the P processors of a torus. In a phase of

the algorithm execution, data in the two input ma-

trices are aligned in such a way that the corre-

sponding square submatrices at each processor can

be multiplied together locally. In order to achieve

such an alignment, the submatrix of A is rolled

leftward and the submatrix of B is rolled upward.

After these processes, the submatrices are multi-

plied and then the results are added to the partial

results. Therefore, for the execution of this algo-

rithm, the steps of performing dot product calcu-

lations, shifting matrix A to the west, and shifting

 2D Mesh SIMD 구조에서의 병렬 행렬 곱셈의 수치적 성능 분석

11

그림 4. Fox와 Cannon 알고리즘과의 성능비교

Fig. 4. Comparison with fox’s and Cannon’s algorithm

matrix B to the north are required. The number

of computation steps required to perform this algo-

rithm can be obtained as




 


     

      

 
 

 

 (2)

Second, Fox’s algorithm is another well-known

memory-efficient parallel algorithm for multiplying

dense matrices. Both N × N matrices A and B are

partitioned among P processors so that each pro-

cessor initially stores blocks of each matrix. This

algorithm uses one-to-all broadcasts of the blocks

of matrix A in processor rows, and the single-step

circular upward shifts of the blocks of matrix B

along processor columns. Therefore, the steps of

performing dot product calculation, broadcasting

matrix A in a horizontal direction, and shifting ma-

trix B to the north neighbors are required.

Therefore, the number of computation steps re-

quired to perform a matrix multiplication can be

found as

 


 


   

    

 
 
 

 


 

 

 (3)

In the Equations (2) and (3), each of Tload,

Tbroadcast, Tmult, Tadd, Tsend, and Tstore is assumed to

take one unit time. This assumption was also made

for the proposed algorithm. Under the same num-

ber of processors, the comparisons in terms of the

number of computation steps are naturally fair.

Consequently, the number of computation steps

on the HMSA with its corresponding algorithms

is superior to those of the others, owing to the hier-

archical construction of control units in multiple

SIMD array architecture. This can significantly re-

duce the number of computation steps. According

to Figure 4, the performance is improved in pro-

portion to both the number of processors and the

size of a matrix. When the number of processors

is 64, Figure 4(a) shows the number of computation

steps as the size of a matrix from 64 × 64 to 2048

× 2048. The number of computation steps increases

drastically as the size of a matrix increases from

512 × 512 to 2048 × 2048. In Figure 4(b) when the

size of a matrix is 2048 × 2048, the number of com-

putation steps decreases drastically until the num-

ber of processor is about 512, and from about 512

processors to 2048 the number of computation

steps decreases steadily.

Therefore, both Figures 4(a) and (b) show that

performance of HMSA is better than others. The

HMSA system can reduce 29.1% ~ 62.2% of the

number of computation steps required by Cannon’s

algorithm and Fox’s algorithm mapped on the

SIMD torus.

정보통신설비학회 논문지 제10권 제1호 (2011. 03)

12

IV. Conclusion

This paper presented an efficient parallel matrix

multiplication scheme on N × N mesh-connected

SIMD array processor, called multiple hierarchical

SIMD architecture (HMSA) with the features of .

This architecture enables HMSA to have the fea-

tures of diagonally indexed concurrent broadcast

and the accessibility to either rows (row control

mode) or columns (column control mode) of 2D ar-

ray PEs alternately. An algorithmic mapping

method is used for performance evaluation by

mapping matrix multiplication on the proposed

architecture. The asymptotic time complexities of

them are evaluated and the result shows that par-

allel matrix multiplication on HMSA can provide

significant performance improvement.

The result of performance evaluation is shown

that the HMSA is effective to compute ma-

trix-by-matrix and matrix-by-vector operations.

Therefore, the HMSA provides a new platform for

computing various computation-intensive data

parallel applications.

[References]

[1] S. Akhter and J. Roberts, Multi-Core Programming:

Increasing Performance through Software

Multi-threading, Intel Press, 2006.

[2] K. Hirata and J. Goodacre, "ARM MPCore; The

streamlined and scalable ARM11 processor core,"

Proceedings the 2007 Asia and South Pacific Design

Automation Conferenc, pp. 747-748, 2007.

[3] K. A. Hawick, A. Leist, and D .P. Playne, "Mixing

Multi-Core CPUs and GPUs for Scientific Simulation

Software," Computer Science, Massey University,

Tech. Rep. CSTN-102, 2009.

[4] M. Garland, "Sparse matrix computations on many-

core GPU’s," Proceedings of the 45th ACM/IEEE

Design Automation Conference, pp. 2-6, 2008.

[5] D. E. Culler and J. P. Singh, Parallel Computer

Architecture: A Hardware/Software Approach,

Morgan Kaufmann, 1998.

[6] S. G. Shiva, Pipelined and Parallel Computer

Architectures, HarperColling, New York, 1996.

[7] T. Blank, "The MasPar MP-1 architecture," Compcon

Spring '90. 'Intellectual Leverage'. Digest of

Papers. Thirty-Fifth IEEE Computer Society

International Conference. pp. 20-24, March 1990.

[8] D. G. Elliott, R. Mason, P. M. Nyasulu, and W.

Snelgrove, "Minimizing the effect of the host bus on

the performance of a computational RAM log-

ic-in-memory parallel-processing system,”

Proceedings of Custom Integrated Circuits ’99, pp.

631-634, 1999.

[9] R. Smith, K. Fant, D. Parker, R. Stephani and W.

Ching-Yi, “An asynchronous 2-D discrete cosine

transform chip,” Proceedings of Int’l Symp.

Asynchronous Circuits and Systems, pp. 224-233, 1998.

[10] N. Bagherzadeh, Chaves Filho, Guangming Lu, F.J.

Kurdahi, M. H. Lee, and H. Singh, "MorphoSys: an

integrated reconfigurable system for data-parallel

and computation-intensive applications," IEEE

Transactions on Computers, vol. 49 (5), pp. 465-481,

May 2000.

[11] A. Peleg and U. Weiser, "MMX technology ex-

tension to the Intel architecture," IEEE Micro, vol.

16 (4), pp. 42-50 , 1996.

[12] S. Tseng, Y. Kuo, Y. Ku, and Y. Hsu, "Software

Viterbi Decoder with SSE4 Parallel Processing

Instructions for Software DVB-T Receiver,"

Proceedings of the 2009 IEEE Int'l Symposium on

Parallel and Distributed Processing with

Applications, pp. 102-105, 2009.

[13] C. G. Kim, S. J. Lee, and S. D. Kim, "2-D Discrete

Cosine Transform (DCT) on Meshes with

Hierarchical Control Modes," Lecture Notes in

Computer Science, 3522, pp. 675-682, 2005.

[14] A. Grama, A. Gupta, G. Karypis, and V. Kumar.

Introduction to Parallel Computing: Design and

Analysis of Algorithms, The Benjamin/Cummings

Publishing Company, Redwood City, CA, 1994.

[15] L. E. Cannon, A Cellular Computer to Implement the

Kalman Filter Algorithm, Ph. D. Thesis, Montana

State University, 1969.

[16] G. C. Fox, S. W. Otto, and A. J. G. Hey, Matrix

Algorithms on a Hypercube I: Matrix Multiplication,

Parallel Computing, vol. 4, pp. 17-31, 1987.

 2D Mesh SIMD 구조에서의 병렬 행렬 곱셈의 수치적 성능 분석

13

Biography

Cheong Ghil Kim

1987 B.S. in Computer Science, at University

of Redaldns, U.S.A.

2003 M.S. in Computer Science, at Yonsei

University, Korea

2006 Ph.D. in Computer Science, Yonsei

University, Korea

2006~ 2008 PostDoc and Research Professor at the Dept. of

Computer Science, Yonsei University

2008 ~ Current Professor at Namseoul University

<Research Areas> Mobile Embedded Systems, Parallel Processing

<e-mail> cgkim@nsu.ac.kr

