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Abstract

Matrix multiplication is a fundamental operation of linear algebra and arises in many areas of science and engineering. This 
paper introduces an efficient parallel matrix multiplication scheme on N × N mesh-connected SIMD array processor, called multiple 
hierarchical SIMD architecture (HMSA). The architectural characteristic of HMSA is the hierarchically structured control units 
which consist of a global control unit, N local control units configured diagonally, and N2 processing elements (PEs) arranged 
in an N × N array. PEs are communicating through local buses connecting four adjacent neighbor PEs in mesh-torus networks 
and global buses running across the rows and columns called horizontal buses and vertical buses, respectively. This architecture 
enables HMSA to have the features of diagonally indexed concurrent broadcast and the accessibility to either rows (row control 
mode) or columns (column control mode) of 2D array PEs alternately. An algorithmic mapping method is used for performance 
evaluation by mapping matrix multiplication on the proposed architecture. The asymptotic time complexities of them are evaluated 
and the result shows that paralle matrix multiplication on HMSA can provide significant performance improvement. 

Keywords : OpenCL, many-core GPU, parallel programming, convolution

I. Introduction

In recent years, microprocessors are becoming in-

creasingly parallel machines. Multi-core processors 

with media extension ISA (Instruction Set Architecture) 

already has been the dominant trend in processor design 

and GPUs are getting popular as a computing platform 

for general purpose workloads as the main engine in-

creasing the performance of microprocessors [1-3]. As 

this trend continues, the parallel programming of core 

computations could be the best solution for substantially 

improving application performance [4].

Typically, parallel machines can be abstracted as the 

number of CPUs or PEs (processing elements) connected 

with each other using communication networks. Such 

that they have been implemented on the basis of two 

major architectural models: SIMD (Single-Instruction 

stream Multiple-Data streams) and MIMD 

(Multiple-Instruction streams Multiple-Data streams) 

[5]. A distinct difference between SIMD and MIMD 

architecture is the control organization. SIMD machines 

have a central control unit that broadcasts a single 

stream of instructions to PEs for concurrent synchro-

nous execution. In contrast, MIMD machines are dis-

tributed; each PE has an associated control unit. Thus, 

PEs on MIMD machines are stand-alone serial process-
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그림 1. 2D Mesh SIMD 구조

Fig. 1. 2D Mesh SIMD Architecture

ors, with a control unit, a datapath, and local memory.

As for workloads of current microprocessors, typical 

applications are shifting towards data intensive and vec-

tor-oriented media type ones which encompass matrix 

computations in many situations. It is intuitive that par-

allel processing is required and SIMD approaches pro-

vide a good match to those applications.

To accelerate the computations of data intensive ap-

plications, 2D SIMD array has been implemented on 

various hardware architectures since the first SIMD 

machine project, ILLIAC IV [6]. They were introduced 

in the form of special purpose processor or coprocessor 

and intelligent memory systems of a workstation or 

server [7-10]. Furthermore, the increasing demands for 

multimedia application have brought architectural en-

hancements on general purpuse processors. One of these 

enhancements is SIMD mode multimedia extensions. 

Intel's MMX (Multimedia eXtension) [11] and SSE 

(Streaming SIMD Extensions) [12] belong to this 

category. They may have relatively small scale of SIMD 

mode parallelism compared to the previous SIMD sys-

tems mainly formed by large hardware systems, but 

have brought the significant speed up of SIMD techni-

ques for complex data parallel applications.

This paper presents an efficient parallel matrix multi-

plication and transpose scheme on HMSA [13]. For the 

performance evaluation of matrix multiplication is map-

ped onto the proposed array architecture and compared 

with the previous architectures in terms of the number 

of computation steps analytically. 

The organization of this paper is as following. In 

Section 2, the architecture and operational model of 

HMSA is reviewed. Section 3 describes the parallel 

matrix programming paradigms on HMSA. In section 

4, the experimental results will be discussed; finally 

the conclusion will be addressed in Section 5.

II. HMSA

1. Architectural Overview

HMSA is a modified SIMD architecture consist-

ing of a global control unit, N local control units 

configured diagonally, and N2 processing elements 

(PEs) arranged in an N × N array with local buses 

connecting with adjacent four neighbor PEs in a 

mesh network and global buses running across the 

rows and columns called vertical buses (VBUS) 

and horizontal buses (HBUS). Figure 1 shows an 

example of 4 × 4 PE configuration of HMSA. There 

are four local CUs located at the diagonal position 

for this given torus configuration. Both CUs and 

PEs have their own memory CM (Control Memory) 

and PM (Processing Memory), respectively. 

The architectural characteristic of HMSA is the 

hierarchical construction of control units to provide 

an efficient PE control mechanism. GCU controls 

and synchronizes all N local CUs, and provides all 

the interfaces with outsides for programming and 

communications. The N diagonal CUs directly per-

form the control of PEs with two different modes, 

i.e., RC-mode and CC-mode. The former allows all 

PEs to operate on row basis, and the latter does 

identically on column basis. 

   This control scheme can be efficiently utilized 

for the various linear algebra applications with the 

effective behavioral advantages in the point of 

performance. First, the HMSA can allow the diago-

nally indexed concurrent broadcast. This feature 

enables the efficient delivery of each operand vec-

tor to other PEs at the same time instead of sending 
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그림 2. HMSA에서의 행렬 곱셈 알고리즘

Fig. 2. Algorithm for matrix multiplication on HMSA

each element of an operand vector which is a com-

mon way in two-dimensional SIMD arrays. 

Therefore, the matrix-by-vector products can be 

performed in a single cycle because the operand 

vector transmission operation can be overlapped 

with multiplication. Second, the HMSA provides a 

flexible process control mechanism for PE ex-

ecution by the RC-mode and CC-mode.

Each PE in the HMSA is constructed as an ALU, 

a shifter, a set of general-purpose registers, several 

special-purpose registers and its dual ported 

memory. Special purpose registers consist of a 

row/column broadcasting register, a receiving reg-

ister from neighborhood PEs, and a sending regis-

ter to neighborhood PEs. Also two data broadcast 

buses, i.e., the horizontal data broadcast bus for 

RC-mode (HBUS) and the vertical data broadcast 

bus (VBUS) for CC-mode are constructed.

2. Parallel Matrix Multiplication

For the mapping processes, some assumptions of 

the HMSA system and matrix multiplication are 

made. Matrix A and B for multiplication should be 

already stored at the memory block of each PE. The 

size of each matrix and the number of processing 

units are assumed to be N × N and P, respectively. 

If N is smaller than  , then the elements aij and 

bij of A and B are stored at the processor memory 

block of PE, PMi,j, which is logically located at the 

jth column of the ith row, otherwise a different 

method to store the matrices at the memory is 

required. In that case both A and B should be div-

ided into submatrices whose sizes should fit into 

the size of memory. Each row submatrix of A, Ai,k  

and each column submatrix of B, Bk,j should be 

stored at the same PM. The pseudo code of the 

proposed matrix multiplication is shown in Figure 

2. To perform a matrix multiplication in the HMSA, 

every PEi,j for all 0 ≤ i, j  ≤    computes in 

parallel by accessing the memory block PMi,j.

The computing process is described as follows. 

First, every PEi',k' for all 0 ≤ i', k' ≤     fetch-

es the first operands which are element ai',k' of sub-

matrix Ai,k  (0 ≤ i,  k  ≤  ) in matrix A to 

their local registers in parallel in line 7 of Figure 

2. Second, using the same method, every PEk',j' for 

all 0 ≤ k', j' ≤    fetches the second operands 

which are element bk',j'  of submatrix Bk,j  (0 ≤ k, 

j ≤  ) in matrix B  to their local registers 

in parallel in line 10. Third, every PEi',m(i') ( m(i') 

= (i' + k') mod ) for all 0 ≤ i'  ≤    con-

currently broadcasts the first operand vector to 

each own row processor group by RC-mode and 

then every PEi',j' for all 0 ≤ i', j' ≤    multi-

plies the broadcasted operand by the second oper-

and and accumulates the result product as shown 

in lines 14-16. After finishing the MAC ( multi-

ply-and-accumulate) operation, every PEi',j' for all 

0 ≤ i', j'  ≤    shifts up the second operand 

as shown in line 17. Finally, every PEi',j'  for all 0 

≤ i', j'  ≤    writes MAC operation results 

which are element ci',j'  of submatrix Ci,j (0 ≤ i, j  

≤  ) in matrix C to their local memory block 
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그림 3. C=A×B 행렬 곱셈의 데이터 이동

Fig. 3. Communication steps of matrix multiplication C=A×B Algorithm Cannon Fox

Pre and Post 

processing

skewing of 

A and B
none

Computation 

of C
locally locally

Movements 

of A

horizontal

rollings

horizontal

broadcast

Movements 

of B

vertical

rollings

vertical

rollings

표 1. 통신방식

Table 1. Communication patterns

PMi',j' in parallel in line 22. The above processes are 

repeated until finishing the computation for the entire 

matrices. The communication steps in HMSA system 

for C = A × B, with N = 4 and P = 16, is illustrated 

in Figure 3. 

For the above processes, all local CUs in the HMSA 

system can concurrently broadcast each operand vec-

tor to those of PEs belonging to each local CU by 

RC-mode. Because the flexible control mode of HMSA 

system can be performed by CC-mode as well, it can 

effectively supported the operation which needs the 

transposed matrix multiplication. This efficient mech-

anism is applicable to any other linear algebra problem 

using the pattern similar to matrix multiplication. 

Therefore, the number of computation steps required 

to perform a matrix multiplication by HMSA can be 

obtained as







    

  

 







(1)

In the above equation, Tload is the time to read 

the data from the memory block; Tbroadcast to per-

form operand broadcasting; Tmult to perform multi-

plication; Tadd to perform addition; Tsend to perform 

operand shifting; Tstore  to write the data to the 

proper memory block. Each of Tload, Tbroadcast, Tmult, 

Tadd, Tsend,  and Tstore  is assumed to take one unit 

time.

III. Performance Evaluation

Cannon’s algorithm [14, 15] and Fox’s algorithm 

[14, 16] are widely used as a parallel matrix 

multiplication. Here, they are applied to a torus and 

compared with the proposed algorithm in terms of 

the number of computation steps. The communica-

tion patterns of the two algorithms are shown in 

Table 1.

First, Cannon proposed a memory efficient par-

allel algorithm, in which two N × N matrices A 

and B  are divided into square submatrix of size 

among the P  processors of a torus. In a phase of 

the algorithm execution, data in the two input ma-

trices are aligned in such a way that the corre-

sponding square submatrices at each processor can 

be multiplied together locally. In order to achieve 

such an alignment, the submatrix of A is rolled 

leftward and the submatrix of B is rolled upward. 

After these processes, the submatrices are multi-

plied and then the results are added to the partial 

results. Therefore, for the execution of this algo-

rithm, the steps of performing dot product calcu-

lations, shifting matrix A to the west, and shifting 
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그림 4. Fox와 Cannon 알고리즘과의 성능비교

Fig. 4. Comparison with fox’s and Cannon’s algorithm

matrix B  to the north are required. The number 

of computation steps required to perform this algo-

rithm can be obtained as 




 


     

      

 
 

 

  (2)

Second, Fox’s algorithm is another well-known 

memory-efficient parallel algorithm for multiplying 

dense matrices. Both N × N matrices A and B are 

partitioned among P  processors so that each pro-

cessor initially stores   blocks of each matrix. This 

algorithm uses one-to-all broadcasts of the blocks 

of matrix A in processor rows, and the single-step 

circular upward shifts of the blocks of matrix B  

along processor columns. Therefore, the steps of 

performing dot product calculation, broadcasting 

matrix A in a horizontal direction, and shifting ma-

trix B  to the north neighbors are required. 

Therefore, the number of computation steps re-

quired to perform a matrix multiplication can be 

found as

 


 


   

    

 
 
 

 


 

 

 (3)

In the Equations (2) and (3), each of Tload, 

Tbroadcast, Tmult, Tadd, Tsend, and Tstore is assumed to 

take one unit time. This assumption was also made 

for the proposed algorithm. Under the same num-

ber of processors, the comparisons in terms of the 

number of computation steps are naturally fair.

Consequently, the number of computation steps 

on the HMSA with its corresponding algorithms 

is superior to those of the others, owing to the hier-

archical construction of control units in multiple 

SIMD array architecture. This can significantly re-

duce the number of computation steps. According 

to Figure 4, the performance is improved in pro-

portion to both the number of processors and the 

size of a matrix. When the number of processors 

is 64, Figure 4(a) shows the number of computation 

steps as the size of a matrix from 64 × 64 to 2048 

× 2048. The number of computation steps increases 

drastically as the size of a matrix increases from 

512 × 512 to 2048 × 2048. In Figure 4(b) when the 

size of a matrix is 2048 × 2048, the number of com-

putation steps decreases drastically until the num-

ber of processor is about 512, and from about 512 

processors to 2048 the number of computation 

steps decreases steadily.

Therefore, both Figures 4(a) and (b) show that 

performance of HMSA is better than others. The 

HMSA system can reduce 29.1% ~ 62.2% of the 

number of computation steps required by Cannon’s 

algorithm and Fox’s algorithm mapped on the 

SIMD torus. 
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IV. Conclusion

This paper presented an efficient parallel matrix 

multiplication scheme on N × N mesh-connected 

SIMD array processor, called multiple hierarchical 

SIMD architecture (HMSA) with the features of . 

This architecture enables HMSA to have the fea-

tures of diagonally indexed concurrent broadcast 

and the accessibility to either rows (row control 

mode) or columns (column control mode) of 2D ar-

ray PEs alternately. An algorithmic mapping 

method is used for performance evaluation by 

mapping matrix multiplication on the proposed 

architecture. The asymptotic time complexities of 

them are evaluated and the result shows that par-

allel matrix multiplication on HMSA can provide 

significant performance improvement. 

The result of performance evaluation is shown 

that the HMSA is effective to compute ma-

trix-by-matrix and matrix-by-vector operations. 

Therefore, the HMSA provides a new platform for 

computing various computation-intensive data 

parallel applications.
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