• Title/Summary/Keyword: Matrix metalloproteinases

Search Result 330, Processing Time 0.03 seconds

Fluorescent and bioluminescent nanoprobes for in vitro and in vivo detection of matrix metalloproteinase activity

  • Lee, Hawon;Kim, Young-Pil
    • BMB Reports
    • /
    • v.48 no.6
    • /
    • pp.313-318
    • /
    • 2015
  • Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that degrade the extracellular matrix (ECM) and regulate the extracellular microenvironment. Despite the significant role that MMP activity plays in cell-cell and cell-ECM interactions, migration, and differentiation, analyses of MMPs in vitro and in vivo have relied upon their abundance using conventional immunoassays, rather than their enzymatic activities. To resolve this issue, diverse nanoprobes have emerged and proven useful as effective activity-based detection tools. Here, we review the recent advances in luminescent nanoprobes and their applications in in vitro diagnosis and in vivo imaging of MMP activity. Nanoprobes with the purpose of sensing MMP activity consist of recognition and detection units, which include MMP-specific substrates and luminescent (fluorescent or bioluminescent) nanoparticles, respectively. With further research into improvement of the optical performance, it is anticipated that luminescent nanoprobes will have great potential for the study of the functional roles of proteases in cancer biology and nanomedicine. [BMB Reports 2015; 48(6): 313-318]

Adenovirus-Mediated Gene Delivery of Tissue Inhibitor of Metalloproteinase-1 Inhibits Migration of B16F10 Melanoma Cell in Wound Migration Assay

  • Seungwan Jee;Hoil Kang;Park, Sehgeun;Park, Misun;Miok Eom;Taikyung Ryeom;Kim, Okhee
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.177-177
    • /
    • 2003
  • Tumor cell invasion and metastasis are a complex multistep process that involves the degradation of extracellular matrix proteins by matrix metalloproteinases (MMPs). Tissue inhibitor of metalloproteinase-1 (TIMP-1) acts as a negative regulator of matrix metalloproteinase and thus prevents tumor cell invasion and metastasis by preserving extracellular matrix integrity.(omitted)

  • PDF

Inhibitory effect of 2-amino-3-ethoxycarbonyl-1-methyl pyrolo (3,2-b) naphtho-4,9-dione on tumor cell invasion in human fibrosarcoma cells by downregulating matrix metalloproteinase-2 and 9

  • Park, Hyen-Joo;Hwang, Hye-Jin;Lee, Hyun-Jung;Suh, Myung-Eun;Lee, Sang-Kook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.243.1-243.1
    • /
    • 2002
  • Matrix metalloproteinases (MMPs) play an important role in tumor invasion and metastasis by matrix degradation. To analyze the effect of 2-amino-3-ethoxycarbonyl-1-methyl pyrolo (3,2-b) naphtho-4,9-dione (compound 1) on the invasion or metastasis of cancer cells the expression of matrix metalloproteases (MMPs) was investigated in human fibrosarcoma HT 1080 cells by AT -PCR or gelatin zymographic methods. (omitted)

  • PDF

Application of MMP-7 and MMP-10 in Assisting the Diagnosis of Malignant Pleural Effusion

  • Cheng, Daye;Liang, Bin;Li, Yun-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.505-509
    • /
    • 2012
  • Background: Matrix metalloproteinases (MMP) are proteolytic enzymes that are essentially involved in turnover of the extracellular matrix (ECM). The aim was to investigate the diagnostic value of MMP-7 and MMP-10 as tumor markers in pleural effusion (PE) and evaluate the value of combining MMP-7, MMP-10 and carcinoembryonic antigen (CEA) assays as diagnostic aids for malignant cells. Materials and Methods: A total of 179 patients with PE (87 malignant and 92 benign) were included in this study. The levels of MMP-7 and MMP-10 were measured using ELISA. Results: Values for MMP-7 and MMP-10 were significantly higher in malignant PE than those in benign PE (P<0.01). Among all variables evaluated, logistic regression found that MMP-7 and MMP-10 were significantly correlated with the presence of malignant disease (P<0.01). Analysis of receiver operating characteristics (ROC) curves showed that the area under the curve of MMP-10 (0.806) was significantly larger than that of MMP-7 (0.771) and CEA (0.789) (P<0.01). With parallel interpretation, the combination of MMP-10 and CEA achieved the higher sensitivity of 94.6%. The combination of MMP-7 and CEA in serial interpretation was able to boost the specificity to 95.7%. The combination of MMP-7, MMP-10 and CEA produced better sensitivity, specificity, PPV and NPV than MMP-7 and MMP-10 alone. Conclusion: MMP-7 and MMP-10 in PE may represent helpful adjuncts to conventional diagnostic tools in ruling out malignancy as a probable diagnosis, thus guiding the selection of patients who might benefit from further invasive procedures.

Korean Red Ginseng extract ameliorates melanogenesis in humans and induces antiphotoaging effects in ultraviolet B-irradiated hairless mice

  • Saba, Evelyn;Kim, Seung-Hyung;Lee, Yuan Yee;Park, Chae-Kyu;Oh, Jae-Wook;Kim, Tae-Hwan;Kim, Hyun-Kyoung;Roh, Seong-Soo;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.496-505
    • /
    • 2020
  • Background: Panax ginseng is a marvelous herbal remedy for all ailments of body. That may be why it is called Panax, which means "cure for all". Melanin is a pigment that gives color to our skin; however, increased melanin production can lead to tumor formation. Human exposure to ultraviolet B radiation has increased extensively owing to the increased sunlight due to global warming. Consequently, a phenomenon called photoaging has been observed for all skin colors and types. As a result of this phenomenon, a set of enzymes called matrix metalloproteinases, which serve as degradation enzymes for extracellular matrix proteins, mainly collagen, is increased, causing depletion of collagen and resulting in early wrinkle formation. Methods: Therefore, in our study, we used the murine melanoma cell line B16/F10 to study the inhibition of melanogenesis by Korean Red Ginseng (KRG) extract in vitro and HRM-2 hairless mice exposed to artificial ultraviolet B to examine the efficacy of KRG in vivo. We prepared a 3% red ginseng extract cream and evaluated its effects on human skin. Results: Our results demonstrated that KRG induced potent suppression of tyrosinase activity and melanin production in B16/F10 cells; moreover, it reduced the transcription and translation of components involved in the melanin production pathway. In the in vivo experiments, KRG potently suppressed the expression of matrix metalloproteinases, reduced wrinkle formation, and inhibited collagen degradation. On human skin, ginseng cream increased skin resilience and skin moisture and enhanced skin tone. Conclusion: Therefore, we conclude that KRG is an excellent skin whitening and antiaging product.

Abalone Haliotis discus hannai Intestine Digests with Different Molecule Weights Inhibit MMP-2 and MMP-9 Expression in Human Fibrosarcoma Cells

  • Nguyen, Van-Tinh;Qian, Zhong-Ji;Jung, Won-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.2
    • /
    • pp.137-143
    • /
    • 2012
  • The abalone Haliotis discus hannai, is one of the economically important species in the fisheries industry. Abalone intestines are one of the by-products of its processing. To investigate its bioactive potential, abalone intestine was digested using an in vitro gastrointestinal (GI) digestion system containing pepsin, trypsin, and ${\alpha}$-chymotrypsin. The abalone intestine G1 digests (AIGIDs) produced by the GI digestion system were fractionated into AIGID I (> 100 kDa), AIGID II (10-100 kDa), and AIGID III (1-10 kDa) using an ultrafiltration membrane system. Of the three digests, AIGID II and AIGID III exhibited inhibitory effects against matrix metalloproteinase-2 and -9 (MMP-2, MMP-9) in HT1080 human fibrosarcoma cells. Both fractions potently inhibited gelatine digestion by MMP-2 and MMP-9 treated with phorbol 12-myristate 13-acetate (PMA) and migration of HT1080 cells in dose dependently. Furthermore, AIGID II and III attenuated expression of p65, a component of nuclear transcription factor kappa B. These results indicate that of the abalone intestine digests inhibit MMP-2 and MMP-9. Thus, the AIGIDs or their active components may have preventive and therapeutic potential for diseases associated with MMP-2 and MMP-9 activation in fibrosarcoma cells.

Effects of Hormones on the Expression of Matrix Metalloproteinases and Their Inhibitors in Bovine Spermatozoa

  • Kim, Sang-Hwan;Song, Young-Seon;Hwang, Sue-Yun;Min, Kwan-Sik;Yoon, Jong-Taek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.334-342
    • /
    • 2013
  • Proteases and protease inhibitors play key roles in most physiological processes, including cell migration, cell signaling, and cell surface and tissue remodeling. Among these, the matrix metalloproteinase (MMPs) pathway is one of the most efficient biosynthetic pathways for controlling the activation of enzymes responsible for protein degradation. This also indicates the association of MMPs with the maturation of spermatozoa. In an attempt to investigate the effect of MMP activation and inhibitors in cultures with various hormones during sperm capacitation, we examined and monitored the localization and expression of MMPs (MMP-2 and MMP-9), tissue inhibitors of metalloproteinases (TIMP-2 and TIMP-3), as well as their expression profiles. Matured spermatozoa were collected from cultures with follicle-stimulating hormone (FSH), luteinizing hormone (LH), and Lutalyse at 1 h, 6 h, 18 h, and 24 h. ELISA detected the expression of MMP-2, MMP-9, TIMP-2, and TIMP-3 in all culture media, regardless of medium type (FSH-supplemented fertilization Brackett-Oliphant medium (FFBO), LH-supplemented FBO (LFBO), or Lutalyse-supplemented FBO (LuFBO)). TIMP-2 and TIMP-3 expression patterns decreased in LFBO and LuFBO. MMP-2 and MMP-9 activity in FBO and FFBO progressively increased from 1 h to 24 h but was not detected in LFBO and LuFBO. The localization and expression of TIMP-2 and TIMP-3 in sperm heads was also measured by immunofluorescence analysis. However, MMPs were not detected in the sperm heads. MMP and TIMP expression patterns differed according to the effect of various hormones. These findings suggest that MMPs have a role in sperm viability during capacitation. In conjunction with hormones, MMPs play a role in maintaining capacitation and fertilization by controlling extracellular matrix inhibitors of sperm.

Gelastatins, New Inhibitors of Matrix Metalloproteinases from Westerdykella multispora F50733

  • Lee, Ho-Jae;Chung, Myung-Chul;Lee, Choong-Hwan;Chun, Hyo-Kon;Rhee, Joon-Shick;Kho, Yung-Hee
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.128-128
    • /
    • 1998
  • Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteases that degrade extracellular matrix and basement membrane. These enzymes are play important roles in tumor cell invasion and metastasis, as well as angiogenesis and other connective tissue diseases. In our screening program for inhibitors of MMP-2 from fungal metabolites, we have isolated novel non-peptidic inhibitors of MMPs, designated gelastatin A and B from the culture broth of Westerdykella multispora F50733. The structures of gelastatin A and B were determined to be 3-(5E-hexa-2E,4E-dienylidene-2-oxo-5,6-dihydro-2H-pyran-3yl)-propanoic acid and 3-(5Z-hexa-2E,4E-dienylidene-2-oxo-5,6-dihydro-2H-pyran-3yl)-propanoic acid, respectively. Gelastatin A and B exist as a mixture of two stereoisomers in a ratio of 2: 1. The 2: 1 mixture of gelastatin A and B inhibited activated MMP-2 and MMP-9 with an IC$\sub$50/ value of 0.63, 5.29 ${\mu}$M, respectively. They inhibited the invasion of B16F10 melanoma cells through basement membrane Matrigel with dose dependent.

  • PDF

Photoprotective effects of topical ginseng leaf extract using Ultraflo L against UVB-induced skin damage in hairless mice

  • Hong, Yang Hee;Lee, Hyun-Sun;Jung, Eun Young;Han, Sung-Hee;Park, Yooheon;Suh, Hyung Joo
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.456-462
    • /
    • 2017
  • Background: Abnormal activation of matrix metalloproteinases (MMPs) plays an important role in UV-induced wrinkle formation, which is a major dermatological problem. This formation occurs due to the degeneration of the extracellular matrix (ECM). In this study, we investigated the cutaneous photoprotective effects of Ultraflo L treated ginseng leaf (UTGL) in hairless mice. Methods: SKH-1 hairless mice (6 weeks of age) were randomly divided into four groups (8 mice/group). UTGL formulation was applied topically to the skin of the mice for 10 weeks. The normal control group received nonvehicle and was not irradiated with UVB. The UV control (UVB) group received nonvehicle and was exposed to gradient-UVB irradiation. The groups (GA) receiving topical application of UTGL formulation were subjected to gradient-UVB irradiation on $0.5mg/cm^2$ [GA-low (GA-L)] and $1.0mg/cm^2$ [(GA-high (GA-H)] of dorsal skin area, respectively. Results: We found that topical treatment with UTGL attenuated UVB-induced epidermal thickness and impairment of skin barrier function. Additionally, UTGL suppressed the expression of MMP-2, -3, and -13 induced by UVB irradiation. Our results show that topical application of UTGL protects the skin against UVB-induced damage in hairless mice and suggest that UTGL can act as a potential agent for preventing and/or treating UVB-induced photoaging. Conclusion: UTGL possesses sunscreen properties and may exhibit photochemoprotective activities inside the skin of mice. Therefore, UTGL could be used as a potential therapeutic agent to protect the skin against UVB-induced photoaging.

Whole Brain Radiation-Induced Cognitive Impairment: Pathophysiological Mechanisms and Therapeutic Targets

  • Lee, Yong-Woo;Cho, Hyung-Joon;Lee, Won-Hee;Sonntag, William E.
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.357-370
    • /
    • 2012
  • Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tumor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cellular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the identification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defining a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy.