Browse > Article
http://dx.doi.org/10.4062/biomolther.2012.20.4.357

Whole Brain Radiation-Induced Cognitive Impairment: Pathophysiological Mechanisms and Therapeutic Targets  

Lee, Yong-Woo (Department of Biomedical Sciences and Pathobiology, Virginia Tech)
Cho, Hyung-Joon (School of Biomedical Engineering and Sciences, Virginia Tech)
Lee, Won-Hee (Department of Medicine, Stanford University School of Medicine)
Sonntag, William E. (Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center)
Publication Information
Biomolecules & Therapeutics / v.20, no.4, 2012 , pp. 357-370 More about this Journal
Abstract
Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tumor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cellular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the identification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defining a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy.
Keywords
Whole brain radiation; Cognitive impairment; Reactive oxygen species; Inflammation; Extracellular matrix; Physiological angiogenesis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Simpson, J. R., Horton, J., Scott, C., Curran, W. J., Rubin, P., Fischbach, J., Isaacson, S., Rotman, M., Asbell, S. O. and Nelson, J. S. (1993) Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int. J. Radiat. Oncol. Biol. Phys. 26, 239-244.   DOI   ScienceOn
2 Staddon, J. M., Herrenknecht, K., Schulze, C., Smales, C. and Rubin, L. L. (1995) Signal transduction at the blood-brain barrier. Biochem. Soc. Trans. 23, 475-479.   DOI
3 Stone, H. B., Coleman, C. N., Anscher, M. S. and McBride. W. H. (2003) Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 4, 529-536.   DOI
4 Stone, H. B., Moulder, J. E., Coleman, C. N., Ang, K. K., Anscher, M. S., Barcellos-Hoff, M. H., Dynan, W. S., Fike, J. R., Grdina, D. J., Greenberger, J. S., Hauer-Jensen, M., Hill, R. P., Kolesnick, R. N., Macvittie, T. J., Marks, C., McBride, W. H., Metting, N., Pellmar, T., Purucker, M., Robbins, M. E., Schiestl, R. H., Seed, T. M., Tomaszewski, J. E., Travis, E. L., Wallner, P. E., Wolpert, M. and Zaharevitz, D. (2004) Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, December 3-4, 2003. Radiat. Res. 162, 711- 728.   DOI
5 Strup-Perrot, C., Vozenin-Brotons, M. C., Vandamme, M., Linard, C. and Mathé. D. (2005) Expression of matrix metalloproteinases and tissue inhibitor metalloproteinases increases in X-irradiated rat ileum despite the disappearance of CD8a T cells. World J. Gastroenterol. 11, 6312-6321.   DOI
6 Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., Belanger, K., Brandes, A. A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R. C., Ludwin, S. K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J. G., Eisenhauer, E. and Mirimanoff, R. O; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987-996.   DOI   ScienceOn
7 Suo, Z., Tan, J., Placzek, A., Crawford, F., Fang, C. and Mullan, M. (1998) Alzheimer's beta-amyloid peptides induce infl ammatory cascade in human vascular cells: the roles of cytokines and CD40. Brain Res. 807, 110-117.   DOI
8 Tammela, T., Enholm, B., Alitalo, K. and Paavonen, K. (2005) The biology of vascular endothelial growth factors. Cardiovasc. Res. 65, 550-563.   DOI
9 Teismann, P., Tieu, K., Choi, D. K., Wu, D. C., Naini, A., Hunot, S., Vila, M., Jackson-Lewis, V. and Przedborski, S. (2003) Cyclooxygenase- 2 is instrumental in Parkinson's disease neurodegeneration. Proc. Natl. Acad. Sci. USA 100, 5473-5478.   DOI   ScienceOn
10 Tilling, T., Engelbertz, C., Decker, S., Korte, D., Hüwel, S. and Galla, H. J. (2002) Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures. Cell Tissue Res. 310, 19-29.   DOI
11 Tilling, T., Korte, D., Hoheisel, D. and Galla, H. J. (1998) Basement membrane proteins infl uence brain capillary endothelial barrier function in vitro. J. Neurochem. 71, 1151-1157.
12 Toborek, M., Lee, Y. W., Flora, G., Pu, H., András, I. E., Wylegala, E., Hennig, B. and Nath, A. (2005) Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol. Neurobiol. 25, 181-199.   DOI
13 Tofilon, P. J. and Fike, J. R. (2000) The radioresponse of the central nervous system: a dynamic process. Radiat. Res. 153, 357-370.   DOI
14 Tsao, M. N., Lloyd, N. S., Wong, R. K., Rakovitch, E., Chow, E. and Laperriere, N; Supportive Care Guidelines Group of Cancer Care Ontario's Program in Evidence-based Care. (2005) Radiotherapeutic management of brain metastases: a systematic review and meta-analysis. Cancer Treat. Rev. 31, 256-273.   DOI
15 Visse, R. and Nagase, H. (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827-839.   DOI   ScienceOn
16 Undeger, U., Giray, B., Zorlu, A. F., Oge, K. and Baçaran, N. (2004) Protective effects of melatonin on the ionizing radiation induced DNA damage in the rat brain. Exp. Toxicol. Pathol. 55, 379-384.   DOI
17 Verhasselt, V., Goldman, M. and Willems, F. (1998) Oxidative stress up-regulates IL-8 and TNF-alpha synthesis by human dendritic cells. Eur. J. Immunol. 28, 3886-3890.   DOI   ScienceOn
18 Villa, S., Vinolas, N., Verger, E., Yaya, R., Martinez, A., Gil, M., Moreno, V., Caral, L. and Graus, F. (1998) Efficacy of radiotherapy for malignant gliomas in elderly patients. Int. J. Radiat. Oncol. Biol. Phys. 42, 977-980.   DOI
19 Vorotnikova, E., Rosenthal, R. A., Tries, M., Doctrow, S. R. and Braunhut. S. J. (2010) Novel synthetic SOD/catalase mimetics can mitigate capillary endothelial cell apoptosis caused by ionizing radiation. Radiat. Res. 173, 748-759.   DOI
20 Walker, M. D., Alexander, E. Jr., Hunt, W. E., MacCarty, C. S., Mahaley, M. S. Jr., Mealey, J. Jr., Norrell, H. A., Owens, G., Ransohoff, J., Wilson, C. B., Gehan, E. A. and Strike, T. A. (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J. Neurosurg. 49, 333-343.   DOI
21 Walker, M. D., Strike, T. A. and Sheline, G. E. (1979) An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int. J. Radiat. Oncol. Biol. Phys. 5, 1725-1731.   DOI
22 Wang, Z., Juttermann, R. and Soloway, P. D. (2000) TIMP-2 is required for effi cient activation of proMMP-2 in vivo. J. Biol. Chem. 275, 26411-26415.   DOI   ScienceOn
23 Welzel, G., Fleckenstein, K., Schaefer, J., Hermann, B., Kraus-Tiefenbacher, U., Mai, S. K. and Wenz, F. (2008) Memory function before and after whole brain radiotherapy in patients with and without brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 72, 1311-1318.   DOI
24 Warrington, J. P., Csiszar, A., Johnson, D. A., Herman, T. S., Ahmad, S., Lee, Y. W. and Sonntag, W. E. (2011) Cerebral microvascular rarefaction induced by whole brain radiation is reversible by systemic hypoxia in mice. Am. J. Physiol. Heart Circ. Physiol. 300, H736-744.   DOI
25 Warrington, J. P., Csiszar, A., Mitschelen, M., Lee, Y. W. and Sonntag, W. E. (2012) Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia. PLoS. One. 7, e30444.   DOI
26 Wei, M., Li, H., Huang, H., Xu, D., Zhi, D., Liu, D. and Zhang, Y. (2012) Increased expression of EMMPRIN and VEGF in the rat brain after gamma irradiation. J. Korean Med. Sci. 27, 291-299.   DOI
27 Witzenbichler, B., Maisonpierre, P. C., Jones, P., Yancopoulos, G. D. and Isner, J. M. (1998) Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specifi c receptor tyrosine kinase Tie2. J. Biol. Chem. 273, 18514-185121.   DOI   ScienceOn
28 Wung, B. S., Cheng, J. J., Hsieh, H. J., Shyy, Y. J. and Wang, D. L. (1997) Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ. Res. 81, 1-7.   DOI
29 Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J. and Holash, J. (2000) Vascular-specifi c growth factors and blood vessel formation. Nature 407, 242-248.   DOI   ScienceOn
30 Yang, K., Liu, L., Zhang, T., Wu, G., Ruebe, C., Ruebe, C. and Hu, Y. (2006) TGF-betal transgenic mouse model of thoracic irradiation: modulation of MMP-2 and MMP-9 in the lung tissue. J. Huazhong Univ. Sci. Technolog. Med. Sci. 26, 301-304.   DOI
31 Zhou, H., Liu, Z., Liu, J., Wang, J., Zhou, D., Zhao, Z., Xiao, S., Tao, E. and Suo W. Z. (2011) Fractionated radiation-induced acute encephalopathy in a young rat model: cognitive dysfunction and histologic fi ndings. Am. J. Neuroradiol. 32, 1795-1800.   DOI
32 Hess, K. R. (1999) Extent of resection as a prognostic variable in the treatment of gliomas. J. Neurooncol. 42, 227-231.   DOI
33 Yang, K., Palm, J., Konig, J., Seeland, U., Rosenkranz, S., Feiden, W., Rübe, C. and Rübe, C. E. (2007) Matrix-Metallo-Proteinases and their tissue inhibitors in radiation-induced lung injury. Int. J. Radiat. Biol. 83, 665-676.   DOI
34 Yoneoka, Y., Satoh, M., Akiyama, K., Sano, K., Fujii, Y. and Tanaka, R. (1999) An experimental study of radiation-induced cognitive dysfunction in an adult rat model. Br. J. Radiol. 72, 1196-1201.   DOI
35 Zhao, W., Goswami, P. C. and Robbins, M. E. (2004) Radiation-induced up-regulation of Mmp2 involves increased mRNA stability, redox modulation, and MAPK activation. Radiat. Res. 161, 418- 429.   DOI
36 Zhao, W., Payne, V., Tommasi, E., Diz, D. I., Hsu, F. C. and Robbins, M. E. (2007) Administration of the peroxisomal proliferator-activated receptor gamma agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment. Int. J. Radiat. Oncol. Biol. Phys. 67, 6-9.   DOI
37 Jenrow, K. A., Liu, J., Brown, S. L., Kolozsvary, A., Lapanowski, K. and Kim, J. H. (2011) Combined atorvastatin and ramipril mitigate radiation-induced impairment of dentate gyrus neurogenesis. J. Neurooncol. 101, 449-456.   DOI
38 Hong, J. H., Chiang, C. S., Campbell, I. L., Sun, J. R., Withers, H. R. and McBride, W. H. (1995) Induction of acute phase gene expression by brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 33, 619-626.   DOI
39 Hovdenak, N., Wang, J., Sung, C. C., Kelly, T., Fajardo, L. F. and Hauer- Jensen, M. (2002) Clinical signifi cance of increased gelatinolytic activity in the rectal mucosa during external beam radiation therapy of prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 53, 919-927.   DOI
40 Jenrow, K. A., Brown, S. L., Liu, J., Kolozsvary, A., Lapanowski, K. and Kim. J. H. (2010) Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus. Radiat. Oncol. 5, 6.   DOI
41 Johannesen, T. B., Lien, H. H., Hole, K. H. and Lote, K. (2003) Radiological and clinical assessment of long-term brain tumour survivors after radiotherapy. Radiother. Oncol. 69, 169-176.   DOI   ScienceOn
42 Kantor, G., Laprie, A., Huchet, A., Loiseau, H., Dejean, C. and Mazeron, J. J. (2008) Radiation therapy for glial tumors: technical aspects and clinical indications. Cancer Radiother. 12, 687-694.   DOI
43 Keyeux, A., Brucher, J. M., Ochrymowicz-Bemelmans, D. and Charlier, A. A. (1997) Late effects of X irradiation on regulation of cerebral blood flow after whole-brain exposure in rats. Radiat. Res. 147, 621-630.   DOI
44 Khuntia, D., Brown, P., Li, J. and Mehta, M. P. (2006) Whole-brain radiotherapy in the management of brain metastasis. J. Clin. Oncol. 24, 1295-1304.   DOI
45 Kim, Y. S. and Joh, T. H. (2012) Matrix metalloproteinases, new insights into the understanding of neurodegenerative disorders. Biomol. Ther. 20, 133-143.   DOI
46 Kim, J. H., Brown, S. L., Jenrow, K. A. and Ryu, S. (2008) Mechanisms of radiation-induced brain toxicity and implications for future clinical trials. J. Neurooncol. 87, 279-286.   DOI
47 Kim, J. H., Brown, S. L., Kolozsvary, A., Jenrow, K. A., Ryu, S., Rosenblum, M. L. and Carretero, O. A. (2004) Modifi cation of radiation injury by ramipril, inhibitor of angiotensin-converting enzyme, on optic neuropathy in the rat. Radiat. Res. 161, 137-142.   DOI
48 Kim, S. H., Lim, D. J., Chung, Y. G., Cho, T. H., Lim, S. J., Kim, W. J. and Suh, J. K. (2002) Expression of TNF-alpha and TGF-beta 1 in the rat brain after a single high-dose irradiation. J. Korean Med. Sci. 17, 242-248.   DOI
49 Koblizek, T. I., Weiss, C., Yancopoulos, G. D., Deutsch, U. and Risau, W. (1998) Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr. Biol. 8, 529-532.   DOI
50 Koo, Y. E., Reddy, G. R., Bhojani, M., Schneider, R., Philbert, M. A., Rehemtulla, A., Ross, B. D. and Kopelman, R. (2006) Brain cancer diagnosis and therapy with nanoplatforms. Adv. Drug Deliv. Rev. 58, 1556-1577.   DOI
51 Krishnamurthy, P., Peterson, J. T., Subramanian, V., Singh, M. and Singh, K. (2009) Inhibition of matrix metalloproteinases improves left ventricular function in mice lacking osteopontin after myocardial infarction. Mol. Cell Biochem. 322, 53-62.   DOI
52 Kyrkanides, S., Moore, A. H., Olschowka, J. A., Daeschner, J. C., Williams, J. P., Hansen, J. T. and Kerry O'Banion, M. (2002) Cyclooxygenase- 2 modulates brain infl ammation-related gene expression in central nervous system radiation injury. Brain Res. Mol. Brain Res. 104, 159-169.   DOI
53 Lee, W. H., Sonntag, W. E. and Lee, Y. W. (2010a) Aging attenuates radiation-induced expression of pro-infl ammatory mediators in rat brain. Neurosci. Lett. 476, 89-93.   DOI   ScienceOn
54 Lakshminarayanan, V., Drab-Weiss, E. A. and Roebuck, K. A. (1998) H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells. J. Biol. Chem. 273, 32670-32678.   DOI   ScienceOn
55 Lamproglou, I., Chen, Q. M., Boisserie, G., Mazeron, J. J., Poisson, M., Baillet, F., Le Poncin, M. and Delattre. J. Y. (1995) Radiation induced cognitive dysfunction: an experimental model in the old rat. Int. J. Radiat. Oncol. Biol. Phys. 31, 65-70.   DOI
56 Lee, W. H., Cho, H. J., Sonntag, W. E. and Lee, Y. W. (2011) Radiation attenuates physiological angiogenesis by differential expression of VEGF, Ang-1, tie-2 and Ang-2 in rat brain. Radiat. Res. 176, 753- 760.   DOI
57 Lee, W. H., Sonntag, W. E., Mitschelen, M., Yan, H. and Lee, Y. W. (2010b) Irradiation induces regionally specifi c alterations in proinfl ammatory environments in rat brain. Int. J. Radiat. Biol. 86, 132- 144.   DOI
58 Lee, W. H., Warrington, J. P., Sonntag, W. E. and Lee, Y. W. (2012) Irradiation alters MMP-2/TIMP-2 system and collagen type IV degradation in brain. Int. J. Radiat. Oncol. Biol. Phys. 82, 1559-1566.   DOI
59 Lee, Y. W., Hennig, B., Fiala, M., Kim, K. S. and Toborek, M. (2001a) Cocaine activates redox-regulated transcription factors and induces TNF-alpha expression in human brain endothelial cells. Brain Res. 920, 125-133.   DOI
60 Lee, Y. W., Hennig, B. and Toborek, M. (2003) Redox-regulated mechanisms of IL-4-induced MCP-1 expression in human vascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 284, H185-192.   DOI
61 Limoli, C. L., Giedzinski, E., Rola, R., Otsuka, S., Palmer, T. D. and Fike, J. R. (2004) Radiation response of neural precursor cells: linking cellular sensitivity to cell cycle checkpoints, apoptosis and oxidative stress. Radiat. Res. 161, 17-27.   DOI
62 Lee, Y. W., Hennig, B., Yao, J. and Toborek, M. (2001b) Methamphetamine induces AP-1 and NF-kappaB binding and transactivation in human brain endothelial cells. J. Neurosci. Res. 66, 583-591.   DOI
63 Lee, Y. W., Kuhn, H., Hennig, B., Neish, A. S. and Toborek, M. (2001c) IL-4-induced oxidative stress upregulates VCAM-1 gene expression in human endothelial cells. J. Mol. Cell Cardiol. 33, 83-94.   DOI
64 Lee, Y. W., Park, H. J., Hennig, B. and Toborek, M. (2001d) Linoleic acid induces MCP-1 gene expression in human microvascular endothelial cells through an oxidative mechanism. J. Nutr. Biochem. 12, 648-654.   DOI
65 Liu, B. and Hong, J. S. (2003) Role of microglia in infl ammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther. 304, 1-7.   DOI   ScienceOn
66 Liu, J. L., Tian, D. S., Li, Z. W., Qu, W. S., Zhan, Y., Xie, M. J., Yu, Z. Y., Wang, W. and Wu, G. (2010a) Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial infl ammatory response in vitro and in vivo. Brain Res. 1316, 101-111.   DOI
67 Liu, Y., Xiao, S., Liu, J., Zhou, H., Liu, Z., Xin, Y. and Suo, W. Z. (2010b) An experimental study of acute radiation-induced cognitive dysfunction in a young rat model. AJNR. Am. J. Neuroradiol. 31, 383- 387.   DOI
68 Ljubimova, N. V., Levitman, M. K., Plotnikova, E. D. and Eidus, LKh. (1991) Endothelial cell population dynamics in rat brain after local irradiation. Br. J. Radiol. 64, 934-940.   DOI
69 Lyubimova, N. and Hopewell, J. W. (2004) Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury. Br. J. Radiol. 77, 488-492.   DOI
70 Lukes, A., Mun-Bryce, S., Lukes, M. and Rosenberg, G. A. (1999) Extracellular matrix degradation by metalloproteinases and central nervous system diseases. Mol. Neurobiol. 19, 267-284.   DOI
71 Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., Compton, D., McClain, J., Aldrich, T. H., Papadopoulos, N., Daly, T. J., Davis, S., Sato, T. N. and Yancopoulos, G. D. (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55-60.   DOI
72 Manda, K., Ueno, M., Moritake, T. and Anzai, K. (2007) Radiationinduced cognitive dysfunction and cerebellar oxidative stress in mice: protective effect of alpha-lipoic acid. Behav. Brain Res. 177, 7-14.   DOI
73 Mandriota, S. J. and Pepper, M. S. (1998) Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ. Res. 83, 852-859.   DOI
74 McGeer, P. L. and McGeer, E. G. (1995) The infl ammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Brain Res. Rev. 21, 195- 218.   DOI   ScienceOn
75 McGeer, P. L., Yasojima, K. and McGeer, E. G. (2001) Infl ammation in Parkinson's disease. Adv. Neurol. 86, 83-89.
76 Miller, J. W., Adamis, A. P., Shima, D. T., D'Amore, P. A., Moulton, R. S., O'Reilly, M. S., Folkman, J., Dvorak, H. F., Brown, L. F. and Berse, B., et al. (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am. J. Pathol. 145, 574-584.
77 Mun-Bryce, S. and Rosenberg, G. A. (1998) Matrix metalloproteinases in cerebrovascular disease. J. Cereb. Blood Flow. Metab. 18, 1163- 1172.   DOI
78 Monje, M. L., Toda, H. and Palmer, T. D. (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760- 1765.   DOI
79 Moore, A. H., Olschowka, J. A., Williams, J. P., Okunieff, P. and O'Banion, M. K. (2005) Regulation of prostaglandin E2 synthesis after brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 62, 267-272.   DOI
80 Moulder, J. E. and Cohen, E. P. (2007) Future strategies for mitigation and treatment of chronic radiation-induced normal tissue injury. Semin. Radiat. Oncol. 17, 141-148.   DOI
81 Mut, M. (2012) Surgical treatment of brain metastasis: a review. Clin. Neurol. Neurosurg. 114, 1-8.   DOI
82 National Brain Tumor Society. (2012) Brain Tumor Quick Facts. http:// www.braintumor.org/news/press-kit/brain-tumor-facts.html.
83 New, P. (2001) Radiation injury to the nervous system. Curr. Opin. Neurol. 14, 725-734.   DOI
84 Nguyen, V., Gaber, M. W., Sontag, M. R. and Kiani, M. F. (2000) Late effects of ionizing radiation on the microvascular networks in normal tissue. Radiat. Res. 154, 531-536.   DOI
85 Nirmala, C., Jasti, S. L., Sawaya, R., Kyritsis, A. P., Konduri, S. D., Ali- Osman, F., Rao, J. S. and Mohanam, S. (2000) Effects of radiation on the levels of MMP-2, MMP-9 and TIMP-1 during morphogenic glial-endothelial cell interactions. Int. J. Cancer 88, 766-771.   DOI
86 Nordal, R. A. and Wong, C. S. (2005) Molecular targets in radiationinduced blood-brain barrier disruption. Int. J. Radiat. Oncol. Biol. Phys. 62, 279-287.   DOI
87 Paulsson, M. (1992) Basement membrane proteins: structure, assembly, and cellular interactions. Crit. Rev. Biochem. Mol. Biol. 27, 93-127.   DOI
88 Olschowka, J. A., Kyrkanides, S., Harvey, B. K., O'Banion, M. K., Williams, J. P., Rubin, P. and Hansen, J. T. (1997) ICAM-1 induction in the mouse CNS following irradiation. Brain Behav. Immun. 11, 273-285.   DOI
89 Owoeye, O., Farombi, E. O. and Onwuka. S. K. (2011) Gross morphometric reduction of rats' cerebellum by gamma irradiation was mitigated by pretreatment with Vernonia amygdalina leaf extract. Rom. J. Morphol. Embryol. 52, 81-88.
90 Park, H. J., Lee, Y. W., Hennig, B. and Toborek, M. (2001) Linoleic acid-induced VCAM-1 expression in human microvascular endothelial cells is mediated by the NF-kappa B-dependent pathway. Nutr. Cancer 41, 126-134.   DOI
91 Pena, L. A., Fuks, Z. and Kolesnick, R. N. (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fi broblast growth factor and sphingomyelinase defi ciency. Cancer Res. 60, 321-327.
92 Peschel, R. E., Wilson, L., Haffty, B., Papadopoulos, D., Rosenzweig, K. and Feltes, M. (1993) The effect of advanced age on the effi cacy of radiation therapy for early breast cancer, local prostate cancer and grade III-IV gliomas. Int. J. Radiat. Oncol. Biol. Phys. 26, 539-544.   DOI
93 Peters, K. G., Kontos, C. D., Lin, P. C., Wong, A. L., Rao, P., Huang, L., Dewhirst, M. W. and Sankar, S. (2004) Functional signifi cance of Tie2 signaling in the adult vasculature. Recent. Prog. Horm. Res. 59, 51-71.   DOI   ScienceOn
94 Planas, A. M., Sole, S. and Justicia, C. (2001) Expression and activation of matrix metalloproteinase-2 and -9 in rat brain after transient focal cerebral ischemia. Neurobiol. Dis. 8, 834-846.   DOI
95 Quik, E. H., Valk, G. D., Drent, M. L., Stalpers, L. J., Kenemans, J. L., Koppeschaar, H. P. and Dam, P. S. (2012) Reduced growth hormone secretion after cranial irradiation contributes to neurocognitive dysfunction. Growth Horm. IGF. Res. 22, 42-47.   DOI
96 Plate, K. H. (1999) Mechanisms of angiogenesis in the brain. J. Neuropathol. Exp. Neurol. 58, 313-320.   DOI
97 Plotnikova, E. D., Levitman, M. K., Shaposhnikova, V. V., Koshevoy, J. V. and Eidus, L. K. (1984) Protection of microcirculation in rat brain against late radiation injury by gammaphos. Int. J. Radiat. Oncol. Biol. Phys. 10, 365-368.   DOI
98 Plotnikova, E. D., Levitman, M. K., Shaposhnikova, V. V., Koshevoj, J. V. and Eidus, L. K. (1988) Protection of microvasculature in rat brain against late radiation injury by gammaphos. Int. J. Radiat. Oncol. Biol. Phys. 15, 1197-1201.   DOI
99 Raju, U., Gumin, G. J. and Tofi lon, P. J. (2000) Radiation-induced transcription factor activation in the rat cerebral cortex. Int. J. Radiat. Biol. 76, 1045-1053.   DOI
100 Ramanan, S., Kooshki, M., Zhao, W., Hsu, F. C., Riddle, D. R. and Robbins, M. E. (2009) The PPARalpha agonist fenofi brate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 75, 870-877.   DOI
101 Ramanan, S., Zhao, W., Riddle, D. R. and Robbins, M. E. (2010) Role of PPARs in Radiation-Induced Brain Injury. PPAR. Res. 2010, 234975.
102 Rampling, R., James, A. and Papanastassiou, V. (2004) The present and future management of malignant brain tumours: surgery, radiotherapy, chemotherapy. J. Neurol. Neurosurg. Psychiatry 75 Suppl 2, 24-30.
103 Romanic, A. M., White, R. F., Arleth, A. J., Ohlstein, E. H. and Barone, F. C. (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase- 9 reduces infarct size. Stroke 29, 1020-1030.   DOI
104 Ribatti, D. (2005) The crucial role of vascular permeability factor/vascular endothelial growth factor in angiogenesis: a historical review. Br. J. Haematol. 128, 303-309.   DOI
105 Rola, R., Raber, J., Rizk, A., Otsuka, S., VandenBerg, S. R., Morhardt, D. R. and Fike, J. R. (2004) Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive defi cits in young mice. Exp. Neurol. 188, 316-330.   DOI
106 Roman, D. D. and Sperduto, P. W. (1995) Neuropsychological effects of cranial radiation: current knowledge and future directions. Int. J. Radiat. Oncol. Biol. Phys. 31, 983-998.   DOI
107 Rosenberg, G. A., Estrada, E., Kelley, R. O. and Kornfeld, M. (1993) Bacterial collagenase disrupts extracellular matrix and opens blood-brain barrier in rat. Neurosci. Lett. 160, 117-119.   DOI
108 Rosenblum, M. L., Gerosa, M., Dougherty, D. V., Reese, C., Barger, G. R., Davis, R. L., Levin, V. A. and Wilson, C. B. (1982) Age-related chemosensitivity of stem cells from human malignant brain tumours. Lancet 1, 885-887.
109 Roth, N. M., Sontag, M. R. and Kiani, M. F. (1999) Early effects of ionizing radiation on the microvascular networks in normal tissue. Radiat. Res. 151, 270-277.   DOI
110 Rubin, L. L. and Staddon, J. M. (1999) The cell biology of the bloodbrain barrier. Annu. Rev. Neurosci. 22, 11-28.   DOI   ScienceOn
111 Rubin, P., Gash, D. M., Hansen, J. T., Nelson, D. F. and Williams, J. P. (1994) Disruption of the blood-brain barrier as the primary effect of CNS irradiation. Radiother. Oncol. 31, 51-60.   DOI   ScienceOn
112 Sato, T. N., Tozawa, Y., Deutsch, U., Wolburg-Buchholz, K., Fujiwara, Y., Gendron-Maguire, M., Gridley, T., Wolburg, H., Risau, W. and Qin, Y. (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376, 70-74.   DOI   ScienceOn
113 Rutka, J. T., Apodaca, G., Stern, R. and Rosenblum, M. (1988) The extracellular matrix of the central and peripheral nervous systems: structure and function. J. Neurosurg. 69, 155-170.   DOI
114 Ryu, S., Kolozsvary, A., Jenrow, K. A., Brown. S. L. and Kim, J. H. (2007) Mitigation of radiation-induced optic neuropathy in rats by ACE inhibitor ramipril: importance of ramipril dose and treatment time. J. Neurooncol. 82, 119-124.   DOI
115 Sara, M., Claudio, F., Marco, L., Roberto, L., Elena, M., Micaela, M., Lucia, P., Elena, B., Marina, S. and Michele, R. (2011) Time course of hypothalamic-pituitary defi ciency in adults receiving cranial radiotherapy for primary extrasellar brain tumors. Radiother. Oncol. 99, 23-28.   DOI
116 Sawaya, R., Tofi lon, P. J., Mohanam, S., Ali-Osman, F., Liotta, L. A., Stetler-Stevenson, W. G. and Rao, J. S. (1994) Induction of tissuetype plasminogen activator and 72-kDa type-IV collagenase by ionizing radiation in rat astrocytes. Int. J. Cancer 56, 214-218.   DOI
117 Schindler, M. K., Forbes, M. E., Robbins, M. E. and Riddle. D. R. (2008) Aging-dependent changes in the radiation response of the adult rat brain. Int. J. Radiat. Oncol. Biol. Phys. 70, 826-834.   DOI
118 Schnegg, C. I., Kooshki, M., Hsu, F. C., Sui, G. and Robbins, M. E. (2012) $PPAR{\delta}$ prevents radiation-induced proinfl ammatory responses in microglia via transrepression of NF-${\kappa}B$ and inhibition of the $PKC{\alpha}$/MEK1/2/ERK1/2/AP-1 pathway. Free Radic. Biol. Med. 52, 1734-1743.   DOI
119 Schulz, J. B. and Falkenburger, B. H. (2004) Neuronal pathology in Parkinson's disease. Cell Tissue Res. 318, 135-147.   DOI
120 Schultheiss, T. E. and Stephens, L. C. (1992) Invited review: permanent radiation myelopathy. Br. J. Radiol. 65, 737-753.   DOI
121 Sellner, J. and Leib, S. L. (2006) In bacterial meningitis cortical brain damage is associated with changes in parenchymal MMP-9/TIMP- 1 ratio and increased collagen type IV degradation. Neurobiol. Dis. 21, 647-656.   DOI
122 Sellner, J., Simon, F., Meyding-Lamade, U. and Leib, S. L. (2006) Herpes- simplex virus encephalitis is characterized by an early MMP-9 increase and collagen type IV degradation. Brain Res. 1125, 155- 162.   DOI
123 Sepah, S. C. and Bower, J. E. (2009) Positive affect and infl ammation during radiation treatment for breast and prostate cancer. Brain Behav. Immun. 23, 1068-1072.   DOI
124 Sheline, G. E., Wara, W. M. and Smith, V. (1980) Therapeutic irradiation and brain injury. Int. J. Radiat. Oncol. Biol. Phys. 6, 1215-1228.   DOI
125 Shi, L., Adams, M. M., Long, A., Carter, C. C., Bennett, C., Sonntag, W. E., Nicolle, M. M., Robbins, M., D'Agostino, R. and Brunso- Bechtold, J. K. (2006) Spatial learning and memory defi cits after whole-brain irradiation are associated with changes in NMDA receptor subunits in the hippocampus. Radiat. Res. 166, 892-899.   DOI
126 Shirazi, A., Ghobadi, G. and Ghazi-Khansari, M. (2007) A radiobiological review on melatonin: a novel radioprotector. J. Radiat. Res. 48, 263-272.   DOI
127 Simon, A. R., Rai, U., Fanburg, B. L. and Cochran, B. H. (1998) Activation of the JAK-STAT pathway by reactive oxygen species. Am. J. Physiol. 275, 1640-1652.   DOI
128 Graham, C. A. and Cloughesy, T. F. (2004) Brain tumor treatment: chemotherapy and other new developments. Semin. Oncol. Nurs. 20, 260-272.   DOI
129 Giri, R., Selvaraj, S., Miller, C. A., Hofman, F., Yan, S. D., Stern, D., Zlokovic, B. V. and Kalra, V. K. (2002) Effect of endothelial cell polarity on beta-amyloid-induced migration of monocytes across normal and AD endothelium. Am. J. Physiol. Cell Physiol. 283, 895- 904.   DOI
130 Gonzalez, J., Kumar, A. J., Conrad, C. A. and Levin, V. A. (2007) Effect of bevacizumab on radiation necrosis of the brain. Int. J. Radiat. Oncol. Biol. Phys. 67, 323-326.   DOI
131 Groothuis, D. R., Wright, D. C. and Ostertag, C. B. (1987) The effect of $^{125}I$ interstitial radiotherapy on blood-brain barrier function in normal canine brain. J. Neurosurg. 67, 895-902.   DOI
132 Grosch, S. and Kaina, B. (1999) Transcriptional activation of apurinic/ apyrimidinic endonuclease (Ape, Ref-1) by oxidative stress requires CREB. Biochem. Biophys. Res. Commun. 261, 859-863.   DOI
133 Hanahan, D. (1997) Signaling vascular morphogenesis and maintenance. Science 277, 48-50.   DOI
134 Hayes, A. J., Huang, W. Q., Mallah, J., Yang, D., Lippman, M. E. and Li, L. Y. (1999) Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc. Res. 58, 224-237.   DOI
135 Giannelli, G., Bergamini, C., Marinosci, F., Fransvea, E., Quaranta, M., Lupo, L., Schiraldi, O. and Antonaci, S. (2002) Clinical role of MMP-2/TIMP-2 imbalance in hepatocellular carcinoma. Int. J. Cancer 97, 425-431.   DOI
136 Flora, G., Lee, Y. W., Nath, A., Maragos, W., Hennig, B. and Toborek, M. (2002) Methamphetamine-induced TNF-alpha gene expression and activation of AP-1 in discrete regions of mouse brain: potential role of reactive oxygen intermediates and lipid peroxidation. Neuromolecular Med. 2, 71-85.   DOI
137 Hegi, M. E., Diserens, A. C., Gorlia, T., Hamou, M. F., de Tribolet, N., Weller, M., Kros, J. M., Hainfellner, J. A., Mason, W., Mariani, L., Bromberg, J. E., Hau, P., Mirimanoff, R. O., Cairncross, J. G., Janzer, R. C. and Stupp, R. (2005) MGMT gene silencing and benefi t from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997- 1003.   DOI   ScienceOn
138 Fiala, M., Zhang, L., Gan, X., Sherry, B., Taub, D., Graves, M. C., Hama, S., Way, D., Weinand, M., Witte, M., Lorton, D., Kuo, Y. M. and Roher, A. E. (1998) Amyloid-beta induces chemokine secretion and monocyte migration across a human blood--brain barrier model. Mol. Med. 4, 480-489.
139 Fike, J. R., Cann, C. E., Phillips, T. L., Bernstein, M., Gutin, P. H., Turowski, K., Weaver, K. A., Davis, R. L., Higgins, R. J. and DaSilva, V. (1985) Radiation brain damage induced by interstitial 125I sources: a canine model evaluated by quantitative computed tomography. Neurosurgery 16, 530-537.   DOI
140 Flowers, A. (2000) Brain tumors in the older person. Cancer Control 7, 523-538.   DOI
141 Fukuda, A., Fukuda, H., Jönsson, M., Swanpalmer, J., Hertzman, S., Lannering, B., Bjork-Eriksson, T., Marky, I. and Blomgren, K. (2005) Progenitor cell injury after irradiation to the developing brain can be modulated by mild hypothermia or hyperthermia. J. Neurochem. 94, 1604-1619.   DOI
142 Gaber, M. W., Sabek, O. M., Fukatsu, K., Wilcox, H. G., Kiani, M. F. and Merchant, T. E. (2003) Differences in ICAM-1 and TNF-alpha expression between large single fraction and fractionated irradiation in mouse brain. Int. J. Radiat. Biol. 79, 359-366.   DOI
143 Denham, J. W. and Hauer-Jensen, M. (2002) The radiotherapeutic injury--a complex 'wound'. Radiother. Oncol. 63, 129-145.   DOI   ScienceOn
144 Garcia-Alloza, M., Prada, C., Lattarulo, C., Fine, S., Borrelli, L. A., Betensky, R., Greenberg, S. M., Frosch, M. P. and Bacskai, B. J. (2009) Matrix metalloproteinase inhibition reduces oxidative stress associated with cerebral amyloid angiopathy in vivo in transgenic mice. J. Neurochem. 109, 1636-1647.   DOI
145 Gardner, J. and Ghorpade, A. (2003) Tissue inhibitor of metalloproteinase (TIMP)-1: the TIMPed balance of matrix metalloproteinases in the central nervous system. J. Neurosci. Res. 74, 801-806.   DOI
146 Deng, Z., Sui, G., Rosa, P. M. and Zhao, W. (2012) Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells. PLoS. One. 7, e36739.   DOI
147 Dheen, S. T., Kaur, C. and Ling, E. A. (2007) Microglial activation and its implications in the brain diseases. Curr. Med. Chem. 14, 1189- 1197.   DOI
148 Dimitrievich, G. S., Fischer-Dzoga, K. and Griem, M. L. (1984) Radiosensitivity of vascular tissue. I. Differential radiosensitivity of capillaries: a quantitative in vivo study. Radiat. Res. 99, 511-535.   DOI
149 Diserbo, M., Agin, A., Lamproglou, I., Mauris, J., Staali, F., Multon, E. and Amourette, C. (2002) Blood-brain barrier permeability after gamma whole-body irradiation: an in vivo microdialysis study. Can. J. Physiol. Pharmacol. 80, 670-678.   DOI
150 Douw, L., Klein, M., Fagel, S. S., van den Heuvel, J., Taphoorn, M. J., Aaronson, N. K., Postma, T. J., Vandertop, W. P., Mooij, J. J., Boerman, R. H., Beute, G. N., Sluimer, J. D., Slotman, B. J., Reijneveld, J. C. and Heimans, J. J. (2009) Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term followup. Lancet Neurol. 8, 810-818.   DOI
151 Cohadon, F. (1990) Indications for surgery in the management of gliomas. Adv. Tech. Stand. Neurosurg. 17, 189-234.   DOI
152 Erol, F. S., Topsakal, C., Ozveren, M. F., Kaplan, M., Ilhan, N., Ozercan, I. H. and Yildiz, O. G. (2004) Protective effects of melatonin and vitamin E in brain damage due to gamma radiation: an experimental study. Neurosurg. Rev. 27, 65-69.   DOI
153 Ferrara, N. (1999) Vascular endothelial growth factor: molecular and biological aspects. Curr. Top. Microbiol. Immunol. 237, 1-30.   DOI
154 Ferrara, N., Gerber, H. P. and LeCouter, J. (2003) The biology of VEGF and its receptors. Nat. Med. 9, 669-676.   DOI   ScienceOn
155 Collins-Underwood, J. R., Zhao, W., Sharpe, J. G. and Robbins, M. E. (2008) NADPH oxidase mediates radiation-induced oxidative stress in rat brain microvascular endothelial cells. Free Radic. Biol. Med. 45, 929-938.   DOI
156 Conner, K. R., Forbes, M. E., Lee, W. H., Lee, Y. W. and Riddle, D. R. (2011) AT1 receptor antagonism does not infl uence early radiationinduced changes in microglial activation or neurogenesis in the normal rat brain. Radiat. Res. 176, 71-83.   DOI
157 Darzy, K. H., Pezzoli, S. S., Thorner, M. O. and Shalet, S. M. (2005) The dynamics of growth hormone (GH) secretion in adult cancer survivors with severe GH defi ciency acquired after brain irradiation in childhood for nonpituitary brain tumors: evidence for preserved pulsatility and diurnal variation with increased secretory disorderliness. J. Clin. Endocrinol. Metab. 90, 2794-2803.   DOI
158 d'Avella, D., Cicciarello, R., Albiero, F., Mesiti, M., Gagliardi, M. E., Russi, E., d'Aquino, A., Tomasello, F. and d'Aquino, S. (1992) Quantitative study of blood-brain barrier permeability changes after experimental whole-brain radiation. Neurosurgery 30, 30-34.   DOI
159 DeAngelis, L. M., Delattre, J. Y. and Posner, J. B. (1989) Radiationinduced dementia in patients cured of brain metastases. Neurology 39, 789-796.   DOI
160 Davis, S., Aldrich, T. H., Jones, P. F., Acheson, A., Compton, D. L., Jain, V., Ryan, T. E., Bruno, J., Radziejewski, C., Maisonpierre, P. C. and Yancopoulos, G. D. (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87, 1161-1169.   DOI   ScienceOn
161 Delattre, J. Y., Shapiro, W. R. and Posner, J. B. (1989) Acute effects of low-dose cranial irradiation on regional capillary permeability in experimental brain tumors. J. Neurol. Sci. 90, 147-153.   DOI
162 Brown, W. R., Thore, C. R., Moody, D. M., Robbins, M. E. and Wheeler, K. T. (2005) Vascular damage after fractionated whole-brain irradiation in rats. Radiat. Res. 164, 662-668.   DOI
163 Bucci, M. K., Bevan, A. and Roach, M. 3rd. (2005) Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA. Cancer J. Clin. 55, 117-134.   DOI
164 Buckner, J. C., Brown, P. D., O'Neill, B. P., Meyer, F. B., Wetmore, C. J. and Uhm, J. H. (2007) Central nervous system tumors. Mayo. Clin. Proc. 82, 1271-1286.   DOI
165 Calvo, W., Hopewell, J. W., Reinhold, H. S., van den Berg, A. P. and Yeung, T. K. (1987) Dose-dependent and time-dependent changes in the choroid plexus of the irradiated rat brain. Br. J. Radiol. 60, 1109-1117.   DOI
166 Castro, M. G., Cowen, R., Williamson, I. K., David, A., Jimenez-Dalmaroni, M. J., Yuan, X., Bigliari, A., Williams, J. C., Hu, J. and Lowenstein, P. R. (2003) Current and future strategies for the treatment of malignant brain tumors. Pharmacol. Ther. 98, 71-108.   DOI
167 Chan, A. S., Cheung, M. C., Law, S. C. and Chan, J. H. (2004) Phase II study of alpha-tocopherol in improving the cognitive function of patients with temporal lobe radionecrosis. Cancer 100, 398-404.   DOI
168 Chiang, C. S., Hong, J. H., Stalder, A., Sun, J. R., Withers, H. R. and McBride, W. H. (1997) Delayed molecular responses to brain irradiation. Int. J. Radiat. Biol. 72, 45-53.   DOI
169 Chandana, S. R., Movva, S., Arora, M. and Singh, T. (2008) Primary brain tumors in adults. Am. Fam. Physician 77, 1423-1430.
170 Chang, E. L., Wefel, J. S., Hess, K. R., Allen, P. K., Lang, F. F., Kornguth, D. G., Arbuckle, R. B., Swint, J. M., Shiu, A. S., Maor, M. H. and Meyers, C. A. (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus wholebrain irradiation: a randomised controlled trial. Lancet Oncol. 10, 1037-1044.   DOI   ScienceOn
171 Banerjee, S. and Bhat, M. A. (2007) Neuron-glial interactions in bloodbrain barrier formation. Annu. Rev. Neurosci. 30, 235-258.   DOI
172 Barlind, A., Karlsson, N., Björk-Eriksson, T., Isgaard, J. and Blomgren, K. (2010) Decreased cytogenesis in the granule cell layer of the hippocampus and impaired place learning after irradiation of the young mouse brain evaluated using the IntelliCage platform. Exp. Brain Res. 201, 781-787.   DOI
173 Barnett, J. M., McCollum, G. W., Fowler, J. A., Duan, J. J., Kay, J. D., Liu, R. Q., Bingaman, D. P. and Penn, J. S. (2007) Pharmacologic and genetic manipulation of MMP-2 and -9 affects retinal neovascularization in rodent models of OIR. Invest. Ophthalmol. Vis. Sci. 48, 907-915.   DOI
174 Behin, A. and Delattre, J. Y. (2004) Complications of radiation therapy on the brain and spinal cord. Semin. Neurol. 24, 405-417.   DOI
175 Bentzen, S. M. (2006) Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat. Rev. Cancer 6, 702-713.   DOI   ScienceOn
176 Brown, W. R., Blair, R. M., Moody, D. M., Thore, C. R., Ahmed, S., Robbins, M. E. and Wheeler, K. T. (2007) Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: a potential rat model of vascular dementia. J. Neurol. Sci. 257, 67-71.   DOI
177 Bernstein, M., Marotta, T., Stewart, P., Glen, J., Resch, L. and Henkelman, M. (1990) Brain damage from 125I brachytherapy evaluated by MR imaging, a blood-brain barrier tracer, and light and electron microscopy in a rat model. J. Neurosurg. 73, 585-593.   DOI
178 Bouloumie, A., Marumo, T., Lafontan, M. and Busse, R. (1999) Leptin induces oxidative stress in human endothelial cells. FASEB J. 13, 1231-1238.   DOI
179 Breier, G., Albrecht, U., Sterrer, S. and Risau, W. (1992) Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114, 521-532.
180 Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., Fiebich, B. L.,Finch, C. E., Frautschy, S., Griffi n, W. S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I. R., McGeer, P. L., O'Banion, M. K., Pachter, J., Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F. L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G. and Wyss-Coray, T. (2000) Infl ammation and Alzheimer's disease. Neurobiol. Aging 21, 383-421.   DOI   ScienceOn
181 Akiyama, K., Tanaka, R., Sato, M. and Takeda, N. (2001) Cognitive dysfunction and histological fi ndings in adult rats one year after whole brain irradiation. Neurol. Med. Chir (Tokyo). 41, 590-598.   DOI
182 Alavi, A., Hood, J. D., Frausto, R., Stupack, D. G. and Cheresh, D. A. (2003) Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301, 94-96.   DOI
183 American Brain Tumor Association. (2012) Brain Tumor Facts. http:// www.abta.org/news/brain-tumor-fact-sheets/
184 Baker, D. G. and Krochak, R. J. (1989) The response of the microvascular system to radiation: a review. Cancer Invest. 7, 287-294.   DOI
185 Andersen, A. P. (1978) Postoperative irradiation of glioblastomas. Results in a randomized series. Acta. Radiol. Oncol. Radiat. Phys. Biol. 17, 475-484.   DOI
186 Aoudjit, F., Masure, S., Opdenakker, G., Potworowski, E. F. and St- Pierre, Y. (1999) Gelatinase B (MMP-9), but not its inhibitor (TIMP- 1), dictates the growth rate of experimental thymic lymphoma. Int. J. Cancer 82, 743-747.   DOI
187 Araya, J., Maruyama, M., Sassa, K., Fujita, T., Hayashi, R., Matsui, S., Kashii, T., Yamashita, N., Sugiyama, E. and Kobayashi, M. (2001) Ionizing radiation enhances matrix metalloproteinase-2 production in human lung epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 280, L30-38.   DOI
188 Baluna, R. G., Eng, T. Y. and Thomas, C. R. (2006) Adhesion molecules in radiotherapy. Radiat. Res. 166, 819-831.   DOI
189 Abbott, N. J., Ronnback, L. and Hansson, E. (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41-53.   DOI   ScienceOn
190 Abou-Seif, M. A., El-Naggar, M. M., El-Far, M., Ramadan, M. and Salah, N. (2003) Amelioration of radiation-induced oxidative stress and biochemical alteration by SOD model compounds in pre-treated gamma-irradiated rats. Clin. Chim. Acta. 337, 23-33.   DOI
191 Acharya, M. M., Christie, L. A., Lan, M. L., Donovan, P. J., Cotman, C. W., Fike, J. R. and Limoli, C. L. (2009) Rescue of radiation-induced cognitive impairment through cranial transplantation of human embryonic stem cells. Proc. Natl. Acad. Sci. USA 106, 19150-19155.   DOI
192 Acharya, M. M., Christie, L. A., Lan, M. L., Giedzinski, E., Fike, J. R., Rosi, S. L. and Imoli, C. L. (2011) Human neural stem cell transplantation ameliorates radiation-induced cognitive dysfunction. Cancer Res. 71, 4834-4845.   DOI
193 Acharya, M. M., Lan, M. L., Kan, V. H., Patel, N. H., Giedzinski, E., Tseng, B. P. and Limoli, C. L. (2010) Consequences of ionizing radiation-induced damage in human neural stem cells. Free Radic. Biol. Med. 49, 1846-1855.   DOI